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Responsible Sensitive Safety (RSS)

• Defines responsible 
behavior to address 
behavioral uncertainty
– Safe actions when safe 

and proper response 
when not safe

• Guarantees no collision 
when everyone follows 
the rules
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Responsible Sensitive Safety (RSS)
RULE 1. Do not hit the car in 

front
(longitudinal distance)

RULE 2. Do not cut in 
recklessly
(lateral distance)

RULE 3. Right of way is given, 
not taken

RULE 4. Be cautious in areas 
with limited visibility

RULE 5. If you can avoid a 
crash without causing 
another one,
you must

5https://arxiv.org/abs/1708.06374
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RULE 1. Safe Following Distance in RSS
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RULE 1. Safe Following Distance in RSS
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Problem: Assumes perfect perception



Perception Triangle

8

Real-world situation

Pedestrian
speed = 0.1
activity =

walking

Perception

Accuracy

Pedestrian
speed = 0
activity =

standing

True state
(unknowable)



Safety Argument Decomposition
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RSS as a Constraint on ADS
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RSS as a Constraint on ADS
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Sample RSS-Compliant World Model Schema
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Safe following distance

Safe action set Safe(s)



Perception Cases (s → s’)
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Misperception
s → s’ where s ¹ s’
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Safety of Perception
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Misperception s → s’ potentially causes safety risk iff



Safety-Irrelevant Misperceptions
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Misperception s → s’ where Safe(s) = Safe(s’) 



Precise World Model

16

Real-world situation

Pedestrian
speed = 0.1
activity =

walking

Perception

Pedestrian
speed = 0
activity =

standing

True state
(unknowable)

Accuracy



Perceptual Uncertainty Handling via 
Imprecise World Models
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Perceptual Uncertainty Aware RSS (PURSS)
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Lifting World Model Schema to 
Imprecise World Model Schema

Elementwise lifting:
• Class entity to superclass
• Continuous value to interval
• Discrete value to enumerated set
• Derived attributes via set operations and 

interval arithmetic
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Using Imprecise World Models to 
Mitigate Misperception
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A  safe  action  in  an  imprecise  model  must  be  safe  for  
every  precise model  covered  by  the  imprecise  model.

Given an under-perception case, where S is an imprecise 
model of confidence α perceived when the correct model:



Different Risk Levels
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a=10-4
a=10-4a=10-9

a=10-9



Imprecise Classification when
High Integrity Required
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a=10-4
a=10-4

?

a=10-9



Conservative Action for High Integrity
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a=10-4
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Example of Mitigation
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Any

No Lane Obstruction in Front Lane Obstruction in Front (LOF)

Static LOF Front Vehicle

Actions: continue or stop or follow



Safety Requirements on Perception 
Performance from PURSS
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Any

No Lane Obstruction in Front Lane Obstruction in Front (LOF)

Static LOF Front Vehicle

Correct LOF/NLOF classification and
distance ±5 cm
at aLOF = 10-9 for 100% of time duration
within ODD conditions

Correct FV/SLOF classification and
distance ±25 cm and velocity ±0.5 m/s 
at aFV = 10-4 for 90% of time duration
within ODD condition
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Guide to the Expression of 
Uncertainty in Measurement (GUM)

• True accuracy 
unknowable
– Accuracy in ML wrt. test 

set only

• Must estimate 
uncertainty
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Perception Triangle (Instance-Level)
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Perceptual Triangle
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Perceptual Triangle When Using 
Supervised ML
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Factors Influencing Uncertainty (F1-7)
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K. Czarnecki and R. Salay. Towards a Framework to Manage
Perceptual Uncertainty for Safe Automated Driving. WAISE’18



Factors Influencing Uncertainty (F1-7)
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F3: Scene Uncertainty
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F3: Scene Uncertainty

• Surrogate measures
– range, scale, occlusion level, atmospheric visibility, 

illumination, clutter and crowding level

• Also part of development data set coverage
• To determine sufficient coverage, compare 

these measures with
1. Test set accuracy
2. Estimated uncertainty by the network
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Synthetic Dataset to Study
Scene Influence Factors

35Samin Khan, Buu Phan, Rick Salay, and Krzysztof Czarnecki. ProcSy: Procedural Synthetic Dataset Generation Towards Influence Factor Studies 
Of Semantic Segmentation Networks. Workshop on Vision for All Seasons: Bad Weather and Nighttime, associated with CVPR, Long Beach, 2019



Scene Influence Factors -> Accuracy
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Aleatoric and Epistemic Uncertainty
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1

2

3

Mutual Information (MI) = PE - AE

Aleatoric Entropy (AE) = E(H(p)) 

Predictive Entropy (PE) = H(E(p)) 

3

2
1

(Epistemic Uncertainty)

Smith L, Gal Y. Understanding measures of uncertainty for adversarial example detection. arXiv preprint arXiv:1803.08533



Scene Influence Factors -> 
Uncertainty Estimates
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Occlusion and Depth ->
Uncertainty Estimates
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Buu Phan, Samin Khan, and Rick Salay, and Krzysztof Czarnecki. Bayesian Uncertainty Quantification with 
Synthetic Data. In Proceedings of International Workshop on Artificial Intelligence Safety Engineering 
(WAISE), SAFECOMP, Turku, Finland, 2019



Occlusion and Depth ->
Uncertainty Estimates
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|D| = 3000

|D| = 500

|D| = 8000

|D| = 13100



Rain, Clouds, Puddles ->
Uncertainty Estimates
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Coming Soon: Canadian Adverse 
Driving Conditions Dataset
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Summary: Uncertainty-Centric
Assurance of ML-Based Perception
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Insights 
and 

Challenges

• ML currently cannot be assured to 
certainty levels required for 
collision avoidance
– ML is useful for longer-term, 

anticipatory risk reduction
• Perceptual uncertainty must be 

considered for the complete, fused 
perception and over time
– E.g., different information 

becomes certain with different 
delays

• Out-of-distribution detection is still 
far from being useful in practice

• RSS leads to more conservative 
automated driving than human 
driving
– E.g., negotiation in merging
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