Uncertainty-Centric Safety Assurance of ML-Based Perception for Automated Driving

Krzysztof Czarnecki Waterloo Intelligent Systems Engineering (WISE) Lab University of Waterloo

Uncertainty-Centric Assurance of ML-Based Perception

Uncertainty-Centric Assurance of ML-Based Perception

Responsible Sensitive Safety (RSS)

- Defines responsible behavior to address
 behavioral uncertainty
 - Safe actions when safe
 and proper response
 when not safe
- Guarantees no collision when everyone follows the rules

Responsible Sensitive Safety (RSS)

- **RULE 1.** Do not hit the car in front (longitudinal distance)
- RULE 2. Do not cut in recklessly (lateral distance)
- RULE 3. Right of way is given, not taken
- **RULE 4.** Be cautious in areas with limited visibility
- **RULE 5.** If you can avoid a crash without causing another one, you must

RULE 1. Safe Following Distance in RSS

RULE 1. Safe Following Distance in RSS

Perception Triangle

Safety Argument Decomposition

RSS as a Constraint on ADS

RSS as a Constraint on ADS

Sample RSS-Compliant World Model Schema

Safe action set Safe(s)

Perception Cases ($s \rightarrow s'$ **)**

Safety of Perception

Misperception s \rightarrow s' potentially causes safety risk iff

$$\mathtt{Safe}(s') \not\subseteq \mathtt{Safe}(s)$$

Safety-Irrelevant Misperceptions

Misperception $s \rightarrow s'$ where Safe(s) = Safe(s')

Precise World Model

Perceptual Uncertainty Handling via Imprecise World Models

Perceptual Uncertainty Aware RSS (PURSS)

Lifting World Model Schema to Imprecise World Model Schema

Elementwise lifting:

- Class entity to superclass
- Continuous value to interval
- Discrete value to enumerated set
- Derived attributes via set operations and interval arithmetic

Using Imprecise World Models to Mitigate Misperception

Given an under-perception case, where S is an imprecise model of confidence α perceived when the correct model:

 $s \to_{\alpha} S$

A safe action in an imprecise model must be safe for every precise model covered by the imprecise model.

$$\texttt{Safe}(S) = \bigcap_{s_i \in S} \texttt{Safe}(s_i)$$

Different Risk Levels

Imprecise Classification when High Integrity Required

Conservative Action for High Integrity

$$\operatorname{Safe}(S) = \bigcap_{s_i \in S} \operatorname{Safe}(s_i)$$

Example of Mitigation

Actions: continue or stop or follow

Safety Requirements on Perception Performance from PURSS

Uncertainty-Centric Assurance of ML-Based Perception

Guide to the Expression of Uncertainty in Measurement (GUM)

- True accuracy unknowable
 - Accuracy in ML wrt. test set only
- Must estimate uncertainty

ISO IEC.
GUIDE 98-3
Uncertainty of measurement —
Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
Incertitude de mesure
Partie 3: Guide pour l'expression de l'incertitude de mesure (GUM:1995)

Perception Triangle (Instance-Level)

Perceptual Triangle

Instance-level

Domain-level (generic)

Perceptual Triangle When Using Supervised ML

Development

Operation

Factors Influencing Uncertainty (F1-7)

Perceptual Uncertainty for Safe Automated Driving. WAISE'18

Factors Influencing Uncertainty (F1-7)

Perceptual Uncertainty for Safe Automated Driving. WAISE'18

F3: Scene Uncertainty

F3: Scene Uncertainty

• Surrogate measures

 range, scale, occlusion level, atmospheric visibility, illumination, clutter and crowding level

- Also part of development data set coverage
- To determine sufficient coverage, compare these measures with
 - 1. Test set accuracy
 - 2. Estimated uncertainty by the network

Synthetic Dataset to Study Scene Influence Factors

Samin Khan, Buu Phan, Rick Salay, and Krzysztof Czarnecki. ProcSy: Procedural Synthetic Dataset Generation Towards Influence Factor Studies Of Semantic Segmentation Networks. Workshop on Vision for All Seasons: Bad Weather and Nighttime, associated with CVPR, Long Beach, 2019

Scene Influence Factors -> Accuracy

Aleatoric and Epistemic Uncertainty

Predictive Entropy (PE) = H(E(p))

Aleatoric Entropy (AE) = E(H(p))

Mutual Information (MI) = PE - AE (Epistemic Uncertainty)

Smith L, Gal Y. Understanding measures of uncertainty for adversarial example detection. arXiv preprint arXiv:1803.08533

Scene Influence Factors -> Uncertainty Estimates

Occlusion and Depth -> Uncertainty Estimates

Buu Phan, Samin Khan, and Rick Salay, and Krzysztof Czarnecki. Bayesian Uncertainty Quantification with Synthetic Data. In Proceedings of International Workshop on Artificial Intelligence Safety Engineering (WAISE), SAFECOMP, Turku, Finland, 2019

Occlusion and Depth -> Uncertainty Estimates

Rain, Clouds, Puddles -> Uncertainty Estimates

Coming Soon: Canadian Adverse Driving Conditions Dataset

Summary: Uncertainty-Centric Assurance of ML-Based Perception

Insights and Challenges

- ML currently cannot be assured to certainty levels required for collision avoidance
 - ML is useful for longer-term, anticipatory risk reduction
- Perceptual uncertainty must be considered for the complete, fused perception and over time
 - E.g., different information becomes certain with different delays
- Out-of-distribution detection is still far from being useful in practice
- RSS leads to more conservative automated driving than human driving
 - E.g., negotiation in merging