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Uncertainty-Centric
Assurance of ML-Based Perception
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Responsible Sensitive Safety (RSS)

* Defines responsible
behavior to address
behavioral uncertainty

— Safe actions when safe
and proper response
when not safe

e Guarantees no collision
when everyone follows
the rules




Responsible Sensitive Safety (RSS)

RULE 1. Do not hit the car in
front
(longitudinal distance)

RULE 2. Do not cutin
recklessly
(lateral distance)

RULE 3. Right of way is given,
not taken

RULE 4. Be cautious in areas
with limited visibility

RULE 5. If you can avoid a
crash without causing

another one,
you must

https://arxiv.org/abs/1708.06374 5
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RULE 1. Safe Following Distance in RSS

Distance traveled Distance traveled
due to reaction time Braking distance by front vehicle
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RULE 1. Safe Following Distance in RSS
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Problem: Assumes perfect perception
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Perception Triangle

Real-world situation

True state Perception
(unknowable)
Pedestrian Pedestrian
speed =0 < > speed =0.1
activity = activity =
standing Accuracy walking




Safety Argcument Decomposition

ADS

Sensing World model Planning & Actuation

>  Perception >
control




RSS as a Constraint on ADS

RSS
Sensin World model i i
g »  Perception > Planning & Actuation
control
ADS
Sensing World model g Actuation
>  Perception > AT

control




RSS as a Constraint on ADS

RSS

Sensing World model Planning & Actuation

»  Perception >
A A control A
I
I
A .

ADS
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Sensing World model Planning & Actuation

>  Perception >
control




Sample RSS-Compliant World Model Schema

RSS_Scenario

Vehicle

safe(): action set

pos:real

velocity:real

accel: real

color: COLOR

a_max_accel: real=2 // m/s"2
a_max_brake: real =2 // m/s"2
a_min_brake: real=1// m/s"2
response_time: real =3 // sec

Longitudinal_Following

future_pos(t:real): real // est. posin t sec

f

rear vehicle [

safe_long_dist(): real
safe(): action set \

front vehicle Car

<<Enumeration>>

COLOR

red
green
blue
yellow
orange
purple
gray
black
white

a_max_accel: real=4

a_max_brake: real = 4.5
a_min_brake: real =1
is_ego: bool

Truck

length: real
weight: real

future_pos(t:real): real

future_pos(t:real): real

Safe following distance

Safe action set Safe(s)
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Perception Cases (s - <)

Correct Perception

s >s’wheres=5s’

Real-world situation

True state Perception

(unknowable)

S S
Pedestrian =g Pedestrian
speed =0 speed =0
activity = < > activity =
standing standing

Misperception

s >s’wheres#5s’

Real-world situation

True state Perception
(unknowable)
S s’
Pedestrian Pedestrian
V4
speed =0 S#S speed =0.1
activity = < > activity =
standing walking
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Safety of Perception

Misperception s = s’ potentially causes safety risk iff

Safe(s’) € Safe(s)



Safety-Irrelevant Misperceptions

Misperception s - s’ where Safe(s) = Safe(s’)



Precise World Model

Real-world situation

True state Perception
(unknowable)
Pedestrian Pedestrian
speed =0 < > speed =0.1
activity = activity =
standing Accuracy walking




Perceptual Uncertainty Handling via
Imprecise World Models

Real-world situation

Perception

True state
(unknowable)

Imprecise World Model

Pedestrian
speed =0
Pedestrian activity =
— N
speed =0 < standing
activity = g
standing Accuracy Pedestrian
speed =0.1
activity =
walking

Set of credible states
at conf. level o
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Perceptual Uncertainty Aware RSS (PURSS)

RSS - rules lifted to imprecise world model

Situation

. Imprecise Imprecise Planning & Safe Actions
Perception world model control A
[ I
' I
I
|
I
ADS :
|
I
I
> Imperfect World model > Planning & Action
Perception control




Lifting World Model Schema to
Imprecise World Model Schema

Elementwise lifting:

* Class entity to superclass

* Continuous value to interval

* Discrete value to enumerated set

* Derived attributes via set operations and
interval arithmetic



Using Imprecise World Models to
Mitigate Misperception

Given an under-perception case, where S is an imprecise
model of confidence a perceived when the correct model:

S —o S

A safe action in an imprecise model must be safe for
every precise model covered by the imprecise model.

Safe(S)

|
2
Q
Hh
®
—~~
S
~



Different Risk Levels

o=10* o=10" o=10% o=107°

w 4 w




Imprecise Classification when
High Integrity Required

a=10" 104

i,




Conservative Action for High Integrity

a=10"

C )
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Example of Mitigation

Any
No Lane Obstruction in Front Lane Obstruction in Front (LOF)
Static LOF Front Vehicle

Actions: continue or stop or follow

24



Safety Requirements on Perception
Performance from PURSS

Any Correct LOF/NLOF classification and
distance =5 cm

at o, o = 10 for 100% of time duration
within ODD conditions

No Lane Obstruction in Front Lane Obstruction in Front (LOF)

TN

Static LOF Front Vehicle

Correct FV/SLOF classification and
distance £25 cm and velocity 0.5 m/s
at oy = 10 for 90% of time duration
within ODD condition



Uncertainty-Centric
Assurance of ML-Based Perception

Uncertainty Misclassifications,
Influence factors under-classifications,
(domain coverage, guantitative errors

sensor noise, etc.)

Perceptual
Uncertaintv

K. Czarnecki and R. Salay.
ﬁ Towards a Framework to Manage ﬁ
Perceptual Uncertainty for Safe
0 aint Automated Driving. certainty Aware
ncertain ’ -
v yt WAISE'18 Sensitive Safety
anagemen
& *URSS)

Safety requirements
on perception




Guide to the Expression of
Uncertainty in Measurement (GUM)

» True accuracy 150|1EC
unknowable

GUIDE 98-3
— Accuracy in ML wrt. test

set only

. Uncertaiﬁt of measurement —
e Must estimate s

Guide to the expression of

unce rta | nty uncertainty in measurement

(GUM:1995)




Perception Triangle (Instance-Level)

Real-world situation

Sensory
channel

True state
(unknowable)

Pedestrian
- speed = 0 Perception
Pedestrian activity = Camera
spe.efll =0 standing image,
act|v|ty = <:> _ radar
standing Pedestrian Perception  gata
speed =0.1 i
algorithm
Accuracy activity = ®
walking

Set of credible states
(uncertain)
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Perceptual Triangle

Real-world situation
Real-world situations

Sensory
channel

True state
(unknowable)

Pedestrian Sensory

Semantics

Pedestrian Zzte:/i ==0 Perceptio Camera channel
speed =0 Y .
activity - <I:> standinfz h Imagel
standing Pedestrian Perception radar Perception
speed = 0.1 . data P
Accuracy| Lciivity = algorithm
[ki -
Set of credible states Data ata
(uncertain) interpretation
Instance-level Domain-level (generic)
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Perceptual Triangle When Using
Supervised ML

Development Operation
Development Operational
situations and situations and

scenarios scenarios

Partial Sensory Resulting / Sensory
semantics channel perception channel
(examples) y

Training , / Inference
& testing 3
ConCept M 2e10TY  Concept sensory
Data data i Inferred datca
labeling ' state .

T -
MOdel lllllllllllllllllllll
class selection,

training & testing 30



Factors Influencing Uncertainty (F1-7)

Development Operation
Development Operational
situations and Domain shift @ situations and

scenarios > scenarios

Partial @ @ Sensory Resulting @/ @ Sensory
semantics channel perception P channel
(examples) /

F) Training L7 Inference

& testing J 3 c
ensor
Data data : Inferred data

labeling state
Trained e
MOdel ...........................
class selection,
training & testlng ‘ K. Czarnecki and R. Salay. Towards a Framework toManage

Perceptual Uncertainty for Safe Automated Driving. WAISE’18



Factors Influencing Uncertainty (F1-7)

Development Operation
Development Operational
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scenarios > scenarios
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F) Training L7 Inference

& testing J 3 c
ensor
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F3: Scene Uncertainty

33



F3: Scene Uncertainty

* Su rrogate measures

— range, scale, occlusion level, atmospheric visibility,
illumination, clutter and crowding level

* Also part of development data set coverage

* To determine sufficient coverage, compare
these measures with

1. Test set accuracy
2. Estimated uncertainty by the network



Synthetic Dataset to Study
Scene Influence Factors

IR E

' 25% cloud
R

50% cloud
V2

Y

’5" -
75% cloud

g e
occlusion map of left-most car [ 100% rain - 100% cloud 100% puddle

Samin Khan, Buu Phan, Rick Salay, and Krzysztof Czarnecki. ProcSy: Procedural Synthetic Dataset Generation Towards Influence Factor Studies
Of Semantic Segmentation Networks. Workshop on Vision for All Seasons: Bad Weather and Nighttime, associated with CVPR, Long Beach, 2019




Scene Influence Factors -> Accuracy

base image 100% rain model A segmentation map model B segmentation map

road
sidewalk
building

wall

round truth pole

traffic light
vegetation
terrain

sky

100% puddle person

rider
car

van

bus
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0.80

0.75

0.55

0%

model A - rain testin\g\ N
model A - cloud testing ‘\ .
model A - puddle testing ~——_ N

model B - rain testing R T
model B - cloud testing TSel. e
model B - puddle testing -

25% 0% 75% 100%

Amount of Influence Factors
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—&— 3000 clean images
=&~ 3000 clean and 100 rainy images
—&— 3000 clean and 500 rainy images
=&~ 3000 clean and 1000 rainy images

o 5% 0%
Rain Vanations

™%
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Aleatoric and Epistemic Uncertainty

Predictive Entropy (PE) = H(E(p))
Aleatoric Entropy (AE) = E(H(p))

Mutual Information (MI) = PE - AE  (Epistemic Uncertainty)

.
NOIOIOX®

Smith L, Gal Y. Understanding measures of uncertainty for adversarial example detection. arXiv preprint arXiv:1803.%8533
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Scene Influence Factors ->
Uncertainty Estimates

road

sidewalk

building

wall

fence

pole

vegetation

(a) Input Image (b) Ground Truth (c) Prediction terrain
sky
person
rider
car
van
bus

train

(d) Aleatoric Uncertainty (e) Epistemic Uncertainty (e) Predictive Uncertainty
| . | | | .
0.00 0.55 1.10 1.65 220 0.00 0.05 010 015 020 0.25 0.00 0.55 1.10 1.65 2.20
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depth

Occlusion and Depth ->
Uncertainty Estimates

100 (a) Accuracy - Model A 100 (a) Aleatoric Uncertainty - Model A 100 (a) Epistemic Uncertainty - Model A 100 (a) Predictive Uncertainty - Model A
80 80 80 @J & 80
60 60 60 60
= = =
a a a
¥ ¥ ¥
40 40 40 40
20 20 20 O /—\ 20
0 0 \ [ —— , /\ 0
40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
% occlusion % occlusion % occlusion % occlusion

Buu Phan, Samin Khan, and Rick Salay, and Krzysztof Czarnecki. Bayesian Uncertainty Quantification with
Synthetic Data. In Proceedings of International Workshop on Artificial Intelligence Safety Engineering

(WAISE), SAFECOMP, Turku, Finland, 2019 42



Occlusion and Depth ->
Uncertainty Estimates

(a) Predictive Uncertainty - Model A

(a) Accuracy - Model A

40 60

% occlusion
(a) Accuracy - Model B

40 60
% occlusion
(e) Accuracy - Model C

40 60

40 60
% occlusion

80

(a) Aleatoric Uncertainty - Model A

20 40 60 80

_ % occlusion
(b) Aleatoric Uncertainty - Model B

20 40 0 80
_ % occlusion
(f) Aleatoric Uncertainty - Model C

00220

20 40 60 80
. % occlusion
(f) Aleatoric Uncertainty - Model D

40 0
% occlusion

01576 02932 04288 05644

0.7000

(a) Epistemic Uncertainty - Model A

20 Y 60
. _ % occlusion
(c) Epistemic Uncertainty - Model B

3

20 40 60 80
% occlusion
(d) Predictive Uncertainty - Model B

0.000

£ 60 80
. _ % occlusion
(g) Epistemic Uncertainty - Model C

40 60

40 60
% occlusion

4 60 80
__ %occlusion
(h) Predictive Uncertainty - Mobel C

40 0 80

__ %occlusion
(h) Predictive Uncertainty - Mobel D

40 0
% occlusion

0012 0024 0036 0048 0.060 00270 01861 03451 05042 06632 08223

|D| =500

|D| = 3000

|D| = 8000

|D| = 13100
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Aleatoric Entropy

Predictive Entropy

0.51

0.4

0.3

0.21

011

0.6

0.51

044

0.31

0.21

0.1

Rain, Clouds,
Uncertainty

(a) Aleatoric Uncertainty Estimates

Model A- rain

-o Model A- cloud /

-® Model A- puddle
Model B- rain ,
Model B- cloud

Model B- puddle

50%
Intensity Levels
(c) Predictive Uncertainty Estimates

0% 25% 75% 100%

Model A- rain

Model A- cloud
Model A- puddle
Model B- rain
Model B- cloud
Model B- puddle

50%
Intensity Levels

75% 100%

Mutual Information

mioU

Puddles ->

0.05

0.04

0.03

0.02

0.01

0.80

0.75

0.70

0.65

0.60

0.55

0.50

045

stimates

(b) Epistemic Uncertainty Estimates

Model A- rain
Model A- cloud
Model A- puddle

-
-
Model B- rain
Model B- cloud
Model B- puddle

50%
Intensity Levels
(d) mloU

75% 100%

Model A- rain
-®- Model A- cloud
-® Model A- puddle
Model B- rain
Model B- cloud

Model B- puddle

0% 25%
Intensity Levels
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Coming Soon: Canadian Adverse
Driving Conditions Dataset




Summary: Uncertainty-Centric
Assurance of ML-Based Perception

U ' Misclassificati
ncertainty Perceptual |sc_a55| |.c.a |o-ns,
Influence factors under-classifications,

(domain coverage, Uncertainty quantitative errors

sensor noise, etc.)

Perceptual Uncertainty Aware

Uncertainty Responsibility Sensitive Safety
Management (PURSS)

Safety requirements
on perception
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Insights

and
Challenges

ML currently cannot be assured to
certainty levels required for
collision avoidance

— ML is useful for longer-term,
anticipatory risk reduction

Perceptual uncertainty must be
considered for the complete, fused
perception and over time

— E.g., different information
becomes certain with different
delays

Out-of-distribution detection is still
far from being useful in practice

RSS leads to more conservative
automated driving than human
driving

— E.g., negotiation in merging
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