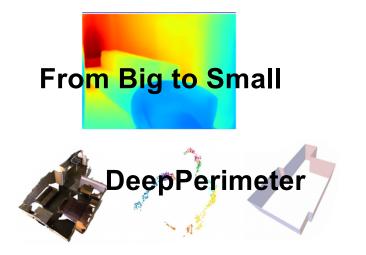


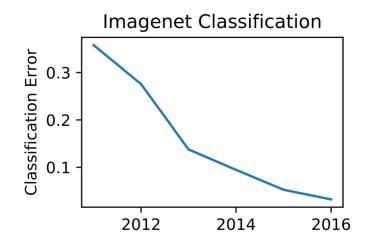
How well does uncertainty estimation actually work?

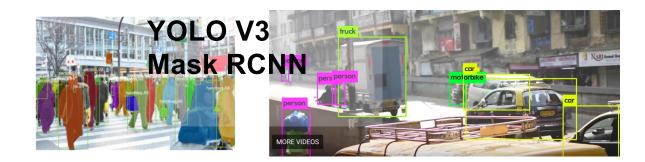
semantics in robotic perception

Hermann Blum, Cesar Cadena, Roland Siegwart

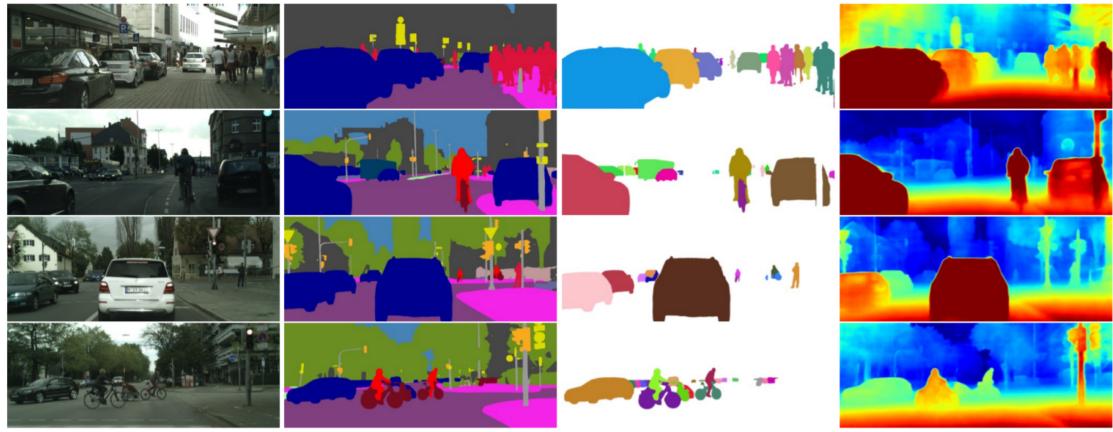
Semantic Scene Understanding





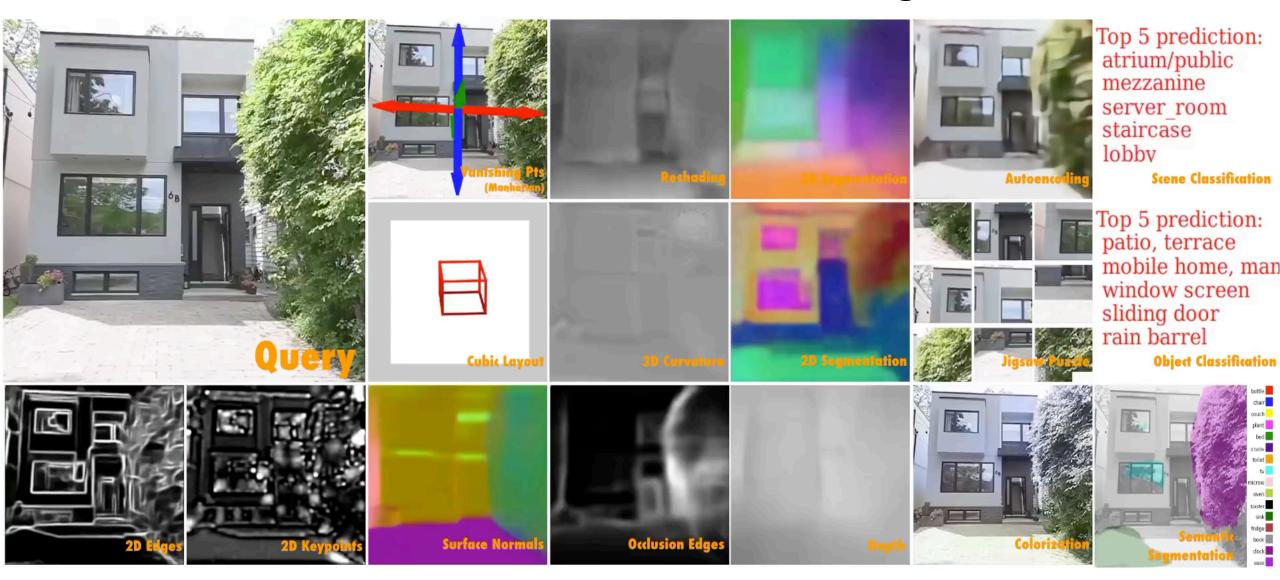


Semantic Scene Understanding



Kendall et al., CVPR '18

Semantic Scene Understanding

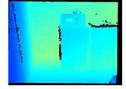


Applications in Robotics

Object Aware Geometry Estimation

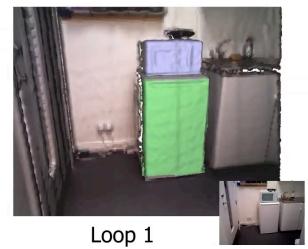
Provides object shape priors Off-the-shelf perceptual toolbox Incorporates geometric and object-based segmentations

Live RGB



Live Depth

*Not actual speed



Mask R-CNN

J. McCormac, et al. 3DV 2018.

M. Grinvald, et al. IROS 2019.

Semantic Aware Geometry Estimation

Object and semantics for estimation and data association

Miksik and Vineet, 2019.

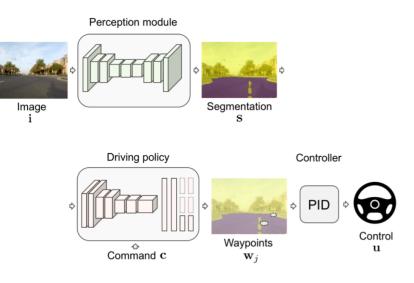
S. Bowman, et al. ICRA 2017.

Semantics for Domain Transfer

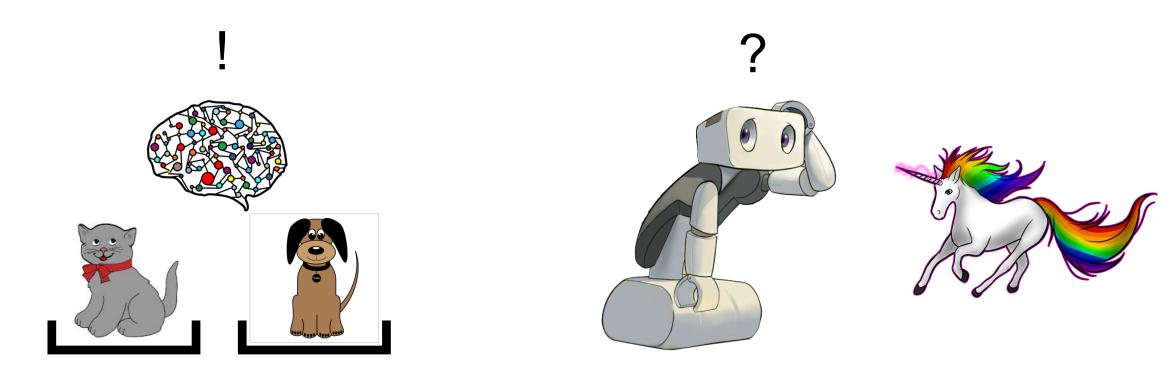
Higher level of abstraction

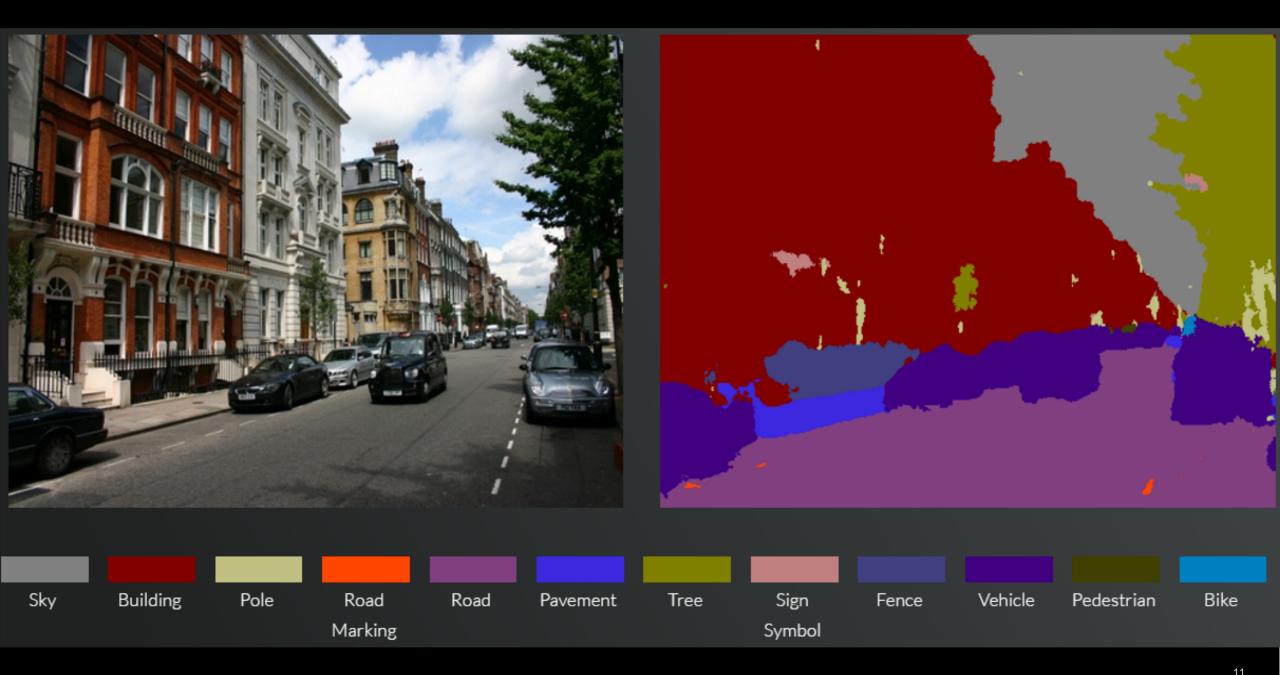
Invariant to illumination and view-point

Easier transfer from virtual to real

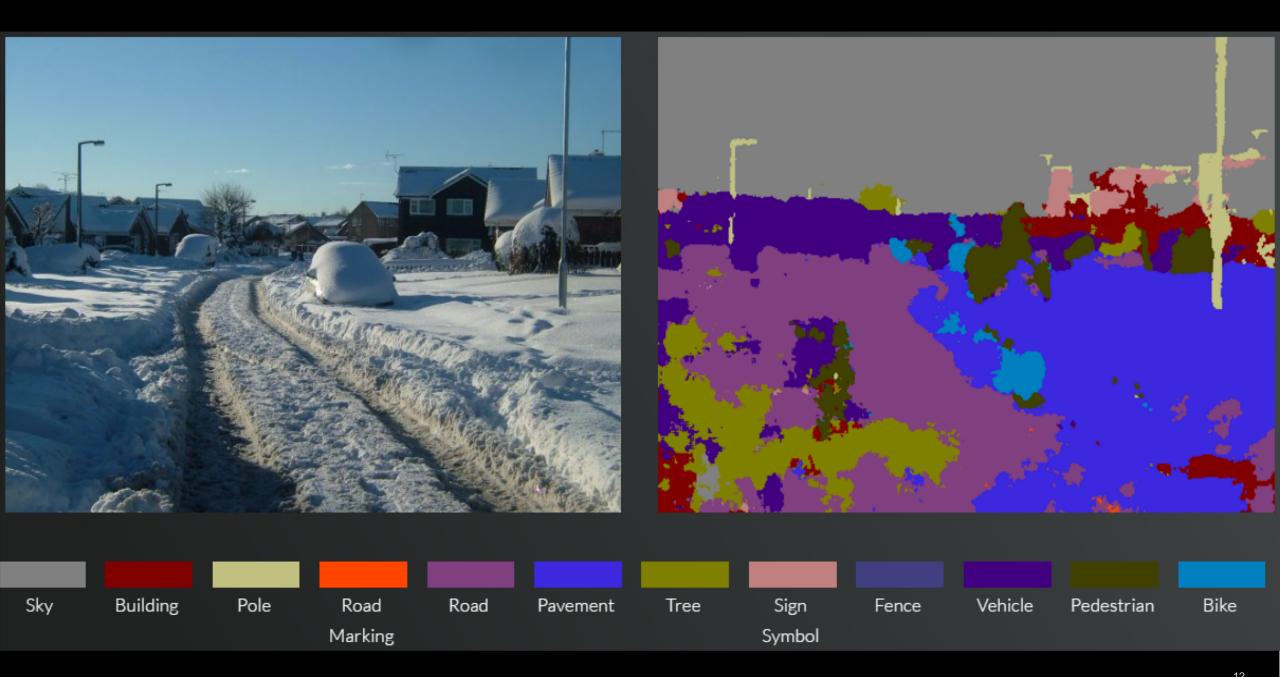


Autonomous Robots operate in an open world.

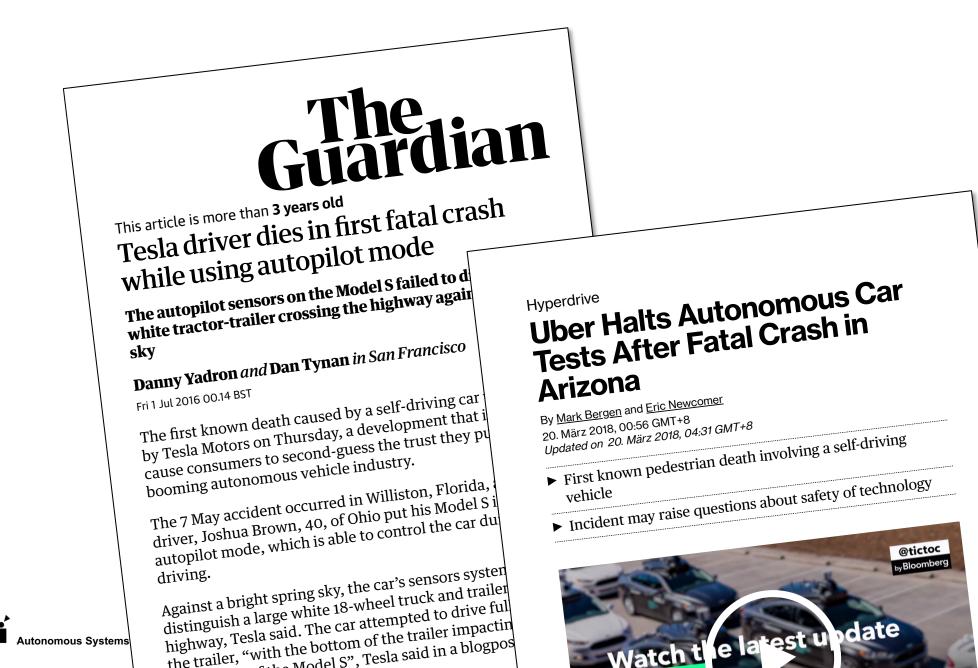




http://mi.eng.cam.ac.uk/projects/segnet/demo.php#demo



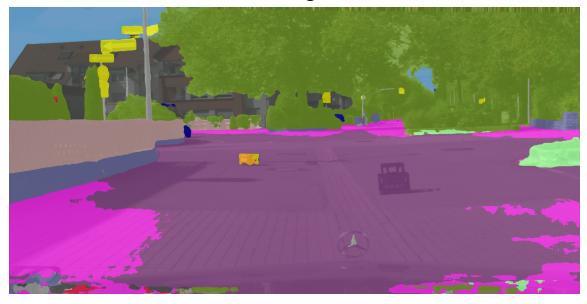
http://mi.eng.cam.ac.uk/projects/segnet/demo.php#demo



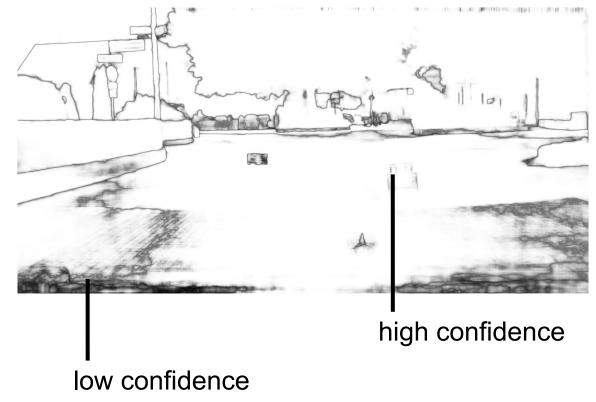
Deep Learning is unreliable outside of the training distribution

Softmax output is overconfident

Semantic Segmentation



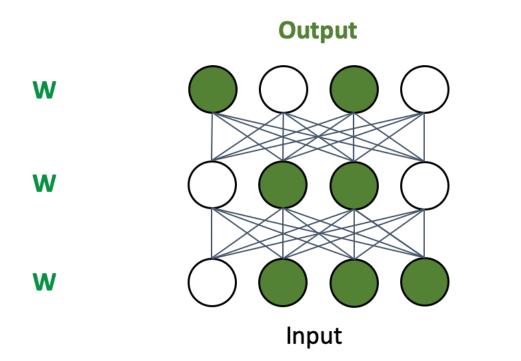
Softmax Confidence



Hendrycks, D., & Gimpel, K. (ICLR 2016). A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks.

Autonomous Systems Lab

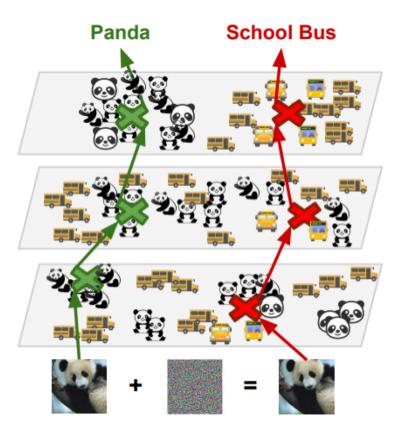
Bayesian Learning: Distribution over Weights



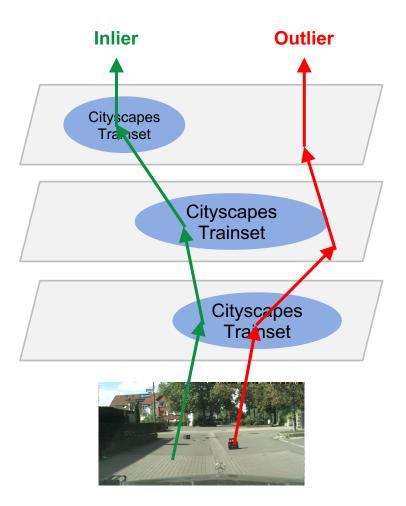
Epistemic Uncertainty

Gal, Y., & Ghahramani, Z. (ICML 2016). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning.

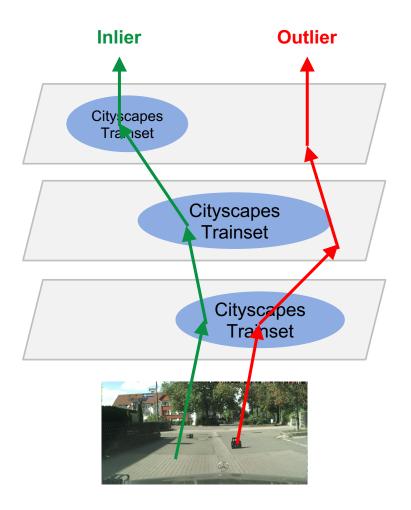
Embedding: Distribution in Layer Outputs



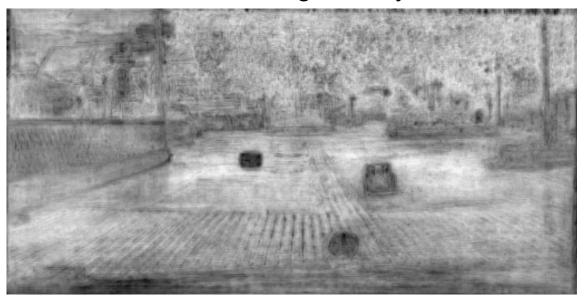
Papernot, N., & McDaniel, P. (2018). Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning.



Neighborhoods: Distribution in Layer Outputs



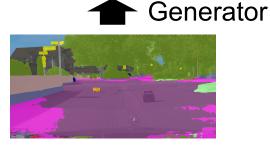
Embedding Density



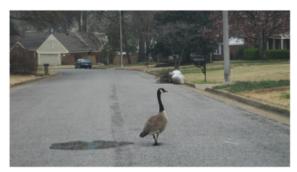
Mandelbaum, A., & Weinshall, D. (2017). Distance-based Confidence Score for Neural Network Classifiers.

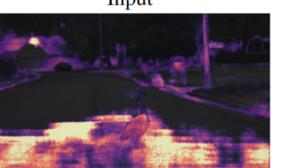
Blum et al. (2019) The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation. arXiv 2019

Reconstruct to measure discrepany



Haldimann, D., Blum, H., Siegwart, R., & Cadena, C. (2019). This is not what I imagined, arXiv 2019





Uncertainty (Dropout)

Ours

RBM autoencoder

Lis, K., Nakka, K., Fua, P., & Salzmann, M. Detecting the Unexpected via Image Resynthesis. ICCV 2019

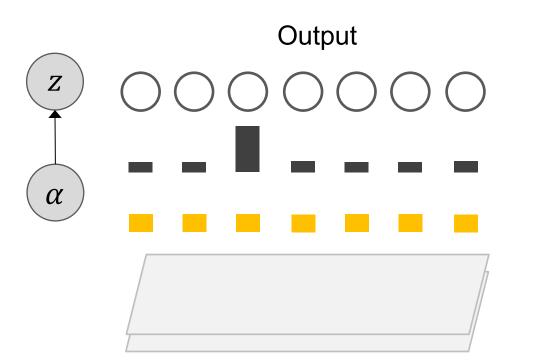
Supervised Anomaly Learning: Dirichlet Prior

Input

Malinin, A., & Gales, M. (2018). Predictive Uncertainty Estimation via Prior Networks.

Autonomous Systems Lab

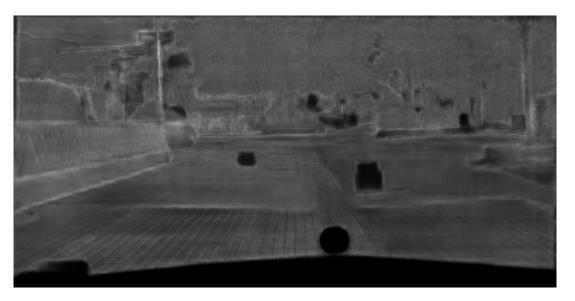
Supervised Anomaly Learning: Dirichlet Prior



Input

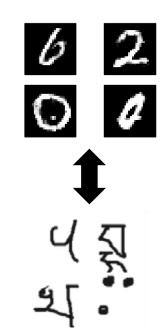
Malinin, A., & Gales, M. (2018). Predictive Uncertainty Estimation via Prior Networks.

Dirichlet Entropy

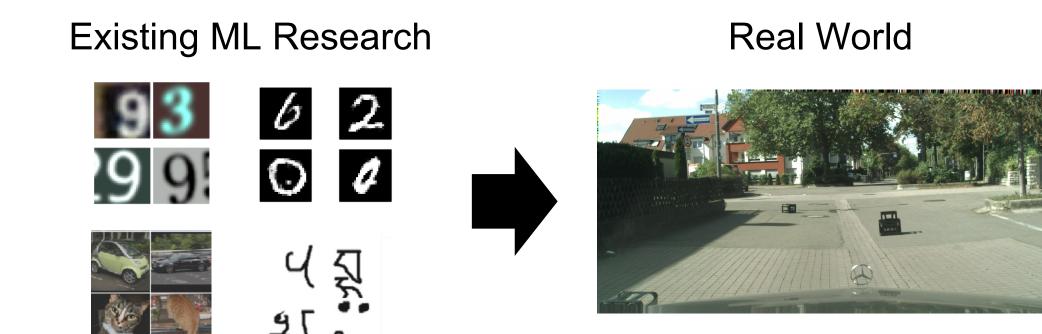


Which method works best for anomaly detection?

Method	SVHN vs STL-10	MNIST vs OMNIGLOT
	AUROC	AUROC
Dirichlet Prior		100%
Dropout		99%
Embedding	90%	
Softmax	87%	99%



Which method works best for anomaly detection?

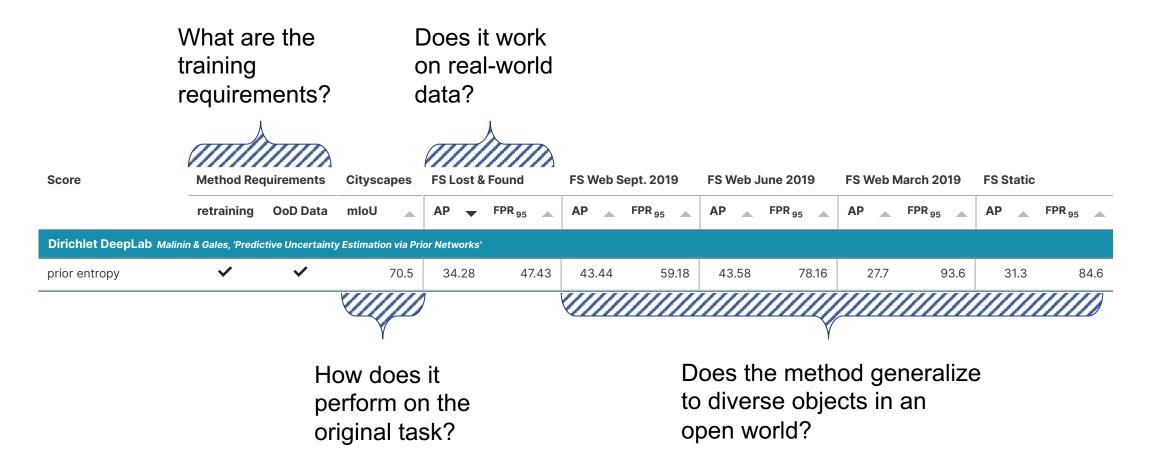


The Fishyscapes Benchmark

Does it work on real data?

Does it work on <mark>unkown objects?</mark>

The Fishyscapes Benchmark



Method	FS Lost & F	ound	FS Web Sept.	Cityscapes		
	AP	FPR95	AP	mloU		
Dirichlet Prior	34%	47%	43%	(70%)		
Dropout	10%	38%	53%	(74%)		
Embedding	5%	24%	40%	(80%)		
Softmax	2%	45%	19%	(80%)		

Trade-off between segmentation and anomaly detection

domain shift makes real-world dataset harder

different metrics have inverse ranking

no good method yet

 Pascal VOC 2012:
 97% AP

 ImageNet DET 2017:
 73% AP

fishyscapes.com is open for submissions!

Test and submit your method!

Medical Diagnosis + Urban Driving (fishyscapes) + [Galaxy Zoo Challenge] +

Part of BDL Benchmarks

Angelos Filos, Sebastian Farquhar, Aidan N. Gomez, Tim G. J. Rudner, Zachary Kenton, Lewis Smith, Milad Alizadeh, Arnoud de Kroon & Yarin Gal. Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis, 2018

WildDash

Zendel et al, ECCV 2018

	Meta AVG	Classic			Negative	Impact (IoU class)										
Algorithm	loU Class	loU Class	iloU Class	loU Cat.	iloU Cat.	loU Class	Blur	Coverage	Distortion	Hood	Occl.	Overexp.	Particle	Screen	Underexp.	Variation
LDN_OE	42.7%	43.3%	31.9%	60.7%	50.3%	52.8%	-11%	-13%	-7%	-10%	-5%	-24%	0%	-6%	-30%	-7%
LDN_BIN	41.8%	43.8%	37.3%	58.6%	53.3%	54.3%	-14%	-14%	-22%	-14%	-3%	-35%	-3%	-9%	-25%	-8%
DN169_CAT_DUAL	41.0%	41.7%	34.4%	57.7%	49.7%	52.6%	-4%	-7%	-11%	-10%	-5%	-24%	-7%	-4%	-26%	-9%
AHISS_ROB	39.0%	41.0%	32.2%	53.9%	39.3%	43.6%	-11%	-12%	-2%	-24%	0%	-27%	-13%	-13%	-28%	-16%
MapillaryAI_ROB	38.9%	41.3%	38.0%	60.5%	57.6%	25.0%	-15%	-5%	-4%	-23%	0%	-23%	-12%	-21%	-25%	-6%
PSP-IBN-SA_ROB	38.5%	39.4%	33.6%	60.6%	51.0%	65.3%	-18%	-3%	-5%	-18%	-3%	-27%	-17%	-13%	-27%	-12%
DN_2_4_CWVI_BIN_SEG	36.6%	37.9%	30.9%	52.5%	43.7%	63.5%	-16%	-7%	0%	-15%	-2%	-30%	-9%	-10%	-41%	-14%
IBN-PSP-SA_ROB	33.6%	34.7%	30.8%	55.1%	38.9%	68.5%	-8%	0%	0%	-22%	0%	-27%	-23%	-23%	-36%	-8%
IBN-PSA-SA_ROB	32.5%	33.6%	30.1%	53.8%	39.3%	69.5%	-9%	-1%	0%	-25%	0%	-28%	-25%	-20%	-32%	-11%
LDN2_ROB	32.1%	34.4%	30.7%	56.6%	47.6%	29.9%	-7%	-0%	-11%	-36%	0%	-37%	-16%	-24%	-42%	-6%
BatMAN_ROB	31.7%	31.4%	17.4%	51.9%	37.3%	36.3%	-9%	-8%	-11%	-20%	-11%	-29%	-5%	-10%	-37%	-6%
HiSS_ROB	31.3%	31.0%	16.3%	50.3%	34.6%	44.1%	-11%	-10%	-11%	-25%	-10%	-32%	-2%	-10%	-44%	-0%
DeepLabv3+_CS	30.6%	34.2%	24.6%	49.0%	38.6%	15.7%	-13%	-15%	-15%	-34%	0%	-55%	-17%	-23%	-53%	-6%
AdapNetv2_ROB	29.5%	28.7%	16.5%	51.5%	38.0%	43.6%	-15%	-10%	-20%	-24%	-14%	-21%	-8%	-7%	-37%	-7%

Softmax is a good indicator for misclassifications.

Method	WildDas FoggyZu Mapillary	urich +	Cityscapes		
	max J	mloU	mloU		
Dropout	42%	(30%)	(74%)		
Embedding	41%	(46%)	(80%)		
Softmax	44%	(46%)	(80%)		

no big difference between methods

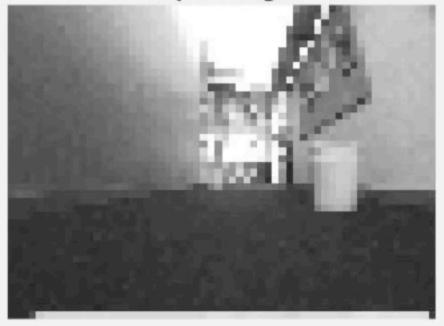
benchmarking challenge: decreasing segmentation performance can make detection easier

misclassification mixes many effects

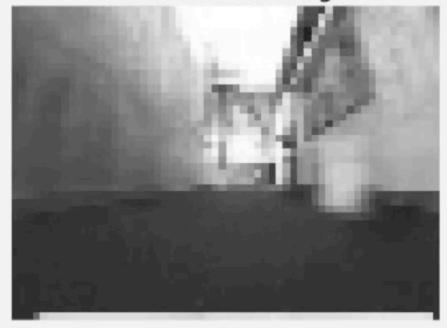
no method is much better than softmax entropy

Open-Set Learned Control

Input Image

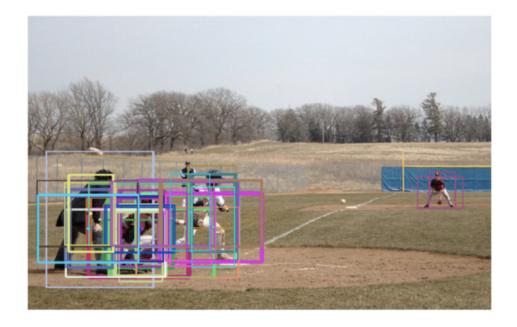


Reconstructed Image

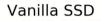


Reconstruction Error: 2.22e-03 Classification: Familiar

Open-Set Detections



Qualitative Demonstration #1



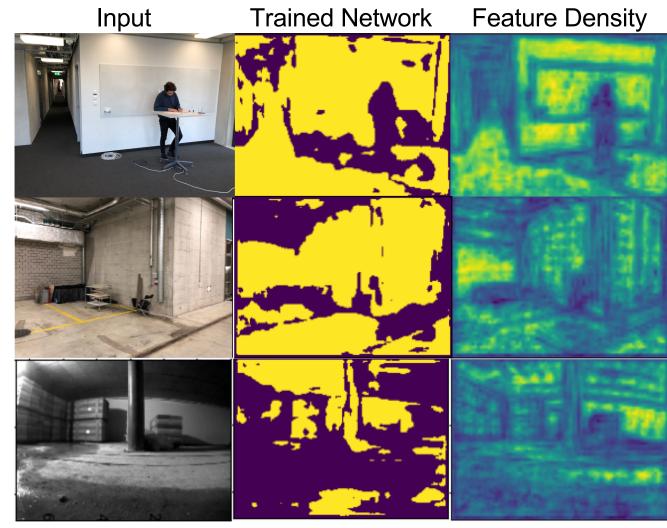
Bayesian SSD

roboticvision.org	vision.org ARC CENTRE OF EXCELLENCE FOR ROBOTIC VISION								
	© Authors of ICRA 2018 Paper 1575	Wed AM	Pod J.8						

Miller et al., ICRA 2018

Open-Set Segmentation

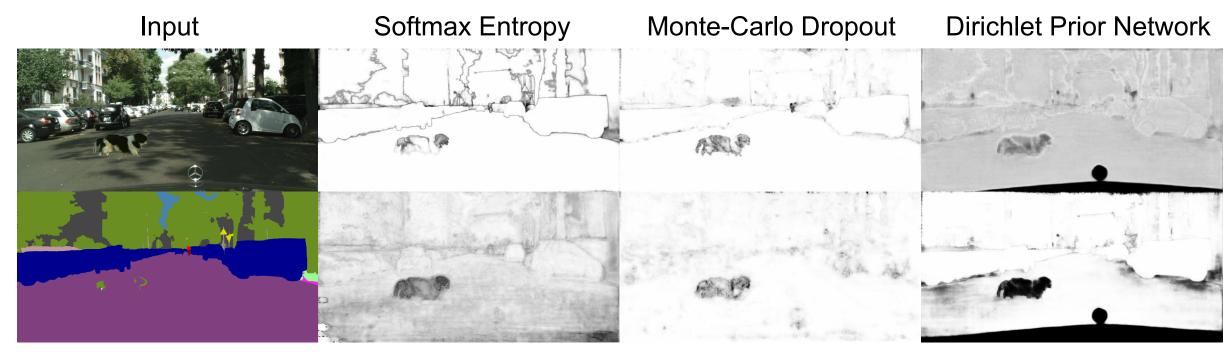
Training: Learn how background and foreground look like.



Marchal et al., arXiv, 2019

How well does uncertainty estimation actually work?

We can measure it, and measurements are clear: More work to be done! Challenges Match method to problem too much noise for safety unsupervised methods lack behind



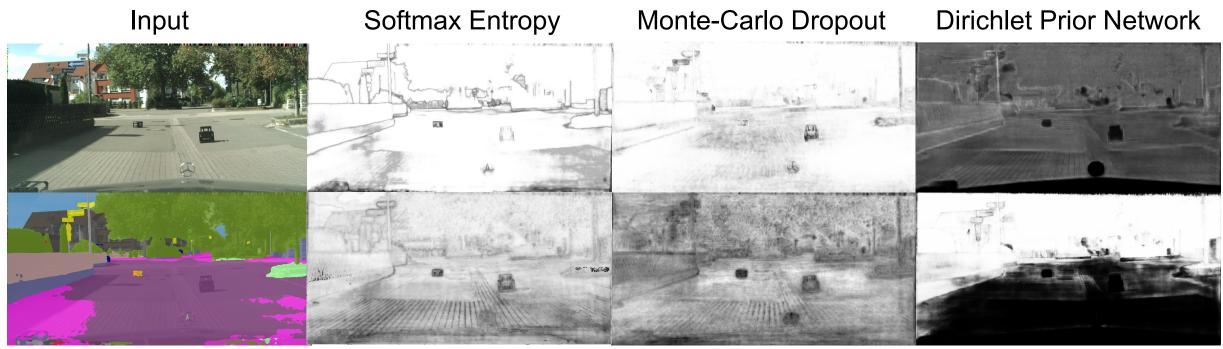
DeepLabv3+

kNN in Embedding

Density in Embedding

Learning a Void Class

Fishyscapes Web March 2019



DeepLabv3+

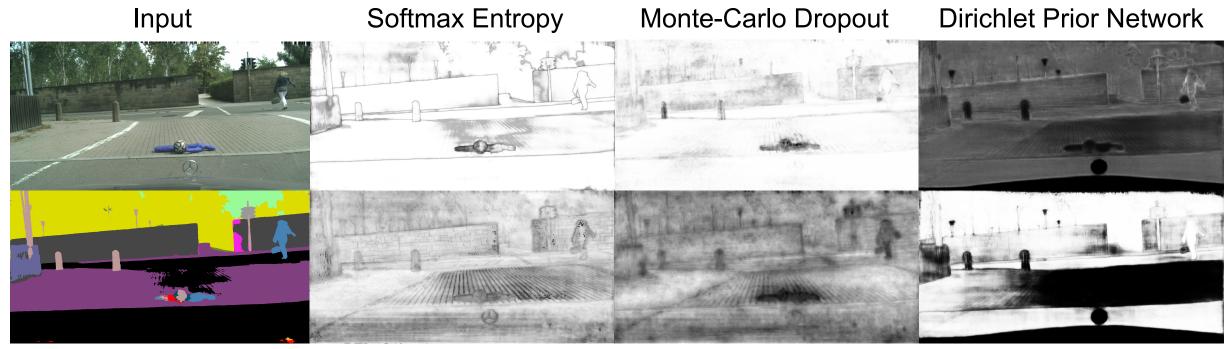
kNN in Embedding

Density in Embedding Lear

Learning a Void Class

Fishyscapes Lost & Found

Autonomous Systems Lab



DeepLabv3+

kNN in Embedding

Density in Embedding Learning

Learning a Void Class

Fishyscapes Lost & Found

Autonomous Systems Lab