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Semantic Scene Understanding

DeepLabV3

YOLO V3
Mask RCNN

DeepPerimeter

From Big to Small
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Semantic Scene Understanding

Kendall et al., CVPR ‘18
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Semantic Scene Understanding

Zamir et al., CVPR ‘18
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Applications in Robotics
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Object Aware Geometry Estimation

Provides object shape priors

Off-the-shelf perceptual toolbox

Incorporates geometric and object-based 
segmentations

J. McCormac, et al. 3DV 2018. M. Grinvald, et al. IROS 2019.
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Semantic Aware Geometry Estimation

Object and semantics for estimation and data association

Miksik and Vineet, 2019. S. Bowman, et al. ICRA 2017.
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Semantics for Domain Transfer

Higher level of abstraction

Invariant to illumination and view-point

Easier transfer from virtual to real

Müller, et al. CoRL 2018.
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Autonomous Robots 
operate in an open 
world.

?!
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http://mi.eng.cam.ac.uk/projects/segnet/demo.php#demo
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This article is more than 3 years old

Tesla driver dies in first fatal crash

while using autopilot mode

Danny Yadron and Dan Tynan in San Francisco

The autopilot sensors on the Model S failed to distinguish a

white tractor�trailer crossing the highway against a bright

sky

Fri 1 Jul 2016 00.14 BST

The first known death caused by a self-driving car was disclosed

by Tesla Motors on Thursday, a development that is sure to

cause consumers to second-guess the trust they put in the

booming autonomous vehicle industry.

The 7 May accident occurred in Williston, Florida, after the

driver, Joshua Brown, 40, of Ohio put his Model S into Tesla’s

autopilot mode, which is able to control the car during highway

driving.

Against a bright spring sky, the car’s sensors system failed to

distinguish a large white 18-wheel truck and trailer crossing the

highway, Tesla said. The car attempted to drive full speed under

the trailer, “with the bottom of the trailer impacting the

windshield of the Model S”, Tesla said in a blogpost.

A police report in the Levy County Journal said the top of the

vehicle “was torn off by the force of the collision”. The truck

Hyperdrive

By Mark Bergen and Eric Newcomer

20. März 2018, 00:56 GMT+8

Updated on 20. März 2018, 04:31 GMT+8

Uber Halts Autonomous Car

Tests After Fatal Crash in

Arizona

Fatal Autonmous Uber Crash

Uber Technologies Inc. halted autonomous vehicle tests after

one of its cars struck and killed a woman in Tempe, Arizona,

First known pedestrian death involving a self-driving

vehicle

Incident may raise questions about safety of technolo�y



DeepLab v3+

Deep Learning is unreliable outside of the
training distribution
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Softmax output is overconfident

Semantic Segmentation Softmax Confidence

low confidence

high confidence

Hendrycks, D., & Gimpel, K. (ICLR 2016). A Baseline for Detecting
Misclassified and Out-of-Distribution Examples in Neural Networks.
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Bayesian Learning: Distribution over Weights

Gal, Y., & Ghahramani, Z. (ICML 2016). Dropout as a Bayesian
Approximation: Representing Model Uncertainty in Deep Learning. 

Epistemic Uncertainty
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Embedding: Distribution in Layer Outputs

Cityscapes
Trainset

Cityscapes
Trainset

Cityscapes
Trainset

Inlier Outlier

Papernot, N., & McDaniel, P. (2018). Deep k-Nearest Neighbors: 
Towards Confident, Interpretable and Robust Deep Learning.
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Neighborhoods: Distribution in Layer Outputs

Cityscapes
Trainset

Cityscapes
Trainset

Cityscapes
Trainset

Inlier Outlier Embedding Density

Blum et al.  (2019) The Fishyscapes Benchmark: Measuring Blind Spots 
in Semantic Segmentation.  arXiv 2019

Mandelbaum, A., & Weinshall, D. (2017). Distance-based Confidence
Score for Neural Network Classifiers.
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Reconstruct to measure discrepany

Lis, K., Nakka, K., Fua, P., & Salzmann, M. Detecting the Unexpected
via Image Resynthesis.  ICCV 2019

Semantic Segmentation

Generator

20

Haldimann, D., Blum, H., Siegwart, R., & Cadena, C. (2019). This is not 
what I imagined, arXiv 2019
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Supervised Anomaly Learning: Dirichlet Prior

Input

Output

𝑧

𝛼

Cityscapes Training Image

Malinin, A., & Gales, M. (2018). Predictive Uncertainty Estimation via 
Prior Networks.
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Supervised Anomaly Learning: Dirichlet Prior

Input

Output

𝑧

𝛼

Dirichlet Entropy

Malinin, A., & Gales, M. (2018). Predictive Uncertainty Estimation via 
Prior Networks.
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Which method works best for anomaly
detection?

Method SVHN vs
STL-10

MNIST vs
OMNIGLOT

AUROC AUROC

Dirichlet Prior 100%

Dropout 99%

Embedding 90%

Softmax 87% 99%
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Existing ML Research Real World

Which method works best for anomaly
detection?

26



The Fishyscapes Benchmark

Does it work
on real data?

Does it work
on unkown objects?
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24.10.2019 Results - The Fishyscapes Benchmark

https://fishyscapes.com/results 1/2

Results

Evaluation Method
All evaluations are measured on our evaluation servers with data that is entirely unknown to the methods, in order to resemble true anomaly and make it harder for methods to overfit our data generation processes. This means that submissions contain binaries that are run over
different input data.

The ‘Fishyscapes Web’ dataset is updated every three months with a fresh query of objects from the web that are overlayed on cityscapes images using varying techniques for every run. Methods are especially tested on new datasets that are generated only after the method has
been submitted to our benchmark.

Metrics
We use Average Precision (AP as the primary metric of our benchmark. It is invariant to data balance and we are therefore able to accurately compare methods regardless of how many pixels they label as anomaly. The tested methods output a continuous score for every pixel. We
compute the metrics over all possible thresholds that a binary classifier could compare the output value with. The Average Precision is therefore also independent to the threshold a binary classifier could use.

In order to highlight safety-critical applications, we also compute the False Positive Rate at 95% True Positive Rate (FPR 95). This resembles the False Positive Rate of a binary classifier that compares the output value of the method against a threshold and classifies all pixels as
anomaly that are above the threshold. We take exactly that threshold which results in 95% True Positive Rate, because it is important in safety-critical systems to catch all anomalies, and for this threshold then pick the method which has the lowest number of false positives.

For methods that cannot use pretrained segmentation models, but require a special loss, this training or retraining can decrease the performance of the semantic segmentation. We therefore also report the mean intersection over union (mIoU on the Cityscapes validation set.

Benchmark Results

Methods that are not attributed in the table are adaptations to semantic segmentation based on different related works. The method details are presented in the benchmark paper.

Score Method Requirements

retraining OoD Data

Cityscapes

mIoU    

FS Lost & Found

AP FPR
95

FS Web Sept. 2019

AP FPR
95

FS Web June 2019

AP FPR
95

FS Web March 2019

AP FPR
95

FS Static

AP FPR
95

Dirichlet DeepLab Malinin & Gales, 'Predictive Uncertainty Estimation via Prior Networks'

prior entropy 70.5 34.28 47.43 43.44 59.18 43.58 78.16 27.7 93.6 31.3 84.6

OoD training

void class 70.4 10.29 22.11 57.29 10.08 56.8 14.7 52.9 13.3 45 19.4

maximize entropy 79 1.74 30.6 42.17 16.37 43.9 20.6 33.8 21.8 27.5 23.6

Bayesian DeepLab Mukhoti & Gal, 'Evaluating Bayesian Deep Learning Methods for Semantic Segmentation'

mutual information 73.8 9.81 38.46 53.24 14.87 54.7 15.3 52.1 15.9 48.7 15.5

Learned Embedding Density Blum, Sarlin et al., 'The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation'

logistic regression 80.3 4.65 24.36 39.52 27.65 40.4 26.46 73.25 5.97 57.16 13.39

minimum nll 80.3 4.25 47.15 40.14 55.37 41.89 47.11 78.89 9.29 62.14 17.43

single-layer nll 80.3 3.01 32.9 29.41 34.85 30.44 34.63 61.2 10.77 40.86 21.29

kNN Embedding

density 80.3 3.55 30.02 35.52 27.86 36.48 33.13 50.38 13.72 44.03 20.25

class-density 80.3 0.79 100 14.38 100 16.07 1 20.35 1 15.77 1

softmax Hendrycks & Gimpel, 'A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks'

entropy 80.3 2.93 44.83 26.09 31.91 23.76 37.83 23.56 33.4 15.41 39.75

max prob. 80.3 1.77 44.85 18.62 32.23 17.78 38.07 17.67 33.62 12.88 39.83

Random Uncertainty Value

random 80.3 0.27 95.01 2.33 95 2.78 95 2.65 95 2.48 95

The Fishyscapes Benchmark

The Fishyscapes Benchmark
What are the 
training 
requirements?

Does it work 
on real-world 
data?

How does it 
perform on the 
original task?

Does the method generalize 
to diverse objects in an 
open world?
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Method FS
Lost & Found

FS Web 
Sept. Cityscapes

AP FPR95 AP mIoU

Dirichlet
Prior 34% 47% 43% (70%)

Dropout 10% 38% 53% (74%)

Embedding 5% 24% 40% (80%)

Softmax 2% 45% 19% (80%)

Trade-off between segmentation and
anomaly detection

domain shift makes real-world dataset
harder

different metrics have inverse ranking

no good method yet

Pascal VOC 2012: 97% AP
ImageNet DET 2017: 73% AP

29



Autonomous Systems Lab

fishyscapes.com is open for submissions!

Test and submit your method! Part of BDL Benchmarks

Angelos Filos, Sebastian Farquhar, Aidan N. Gomez, Tim G. J. Rudner, 
Zachary Kenton, Lewis Smith, Milad Alizadeh, Arnoud de Kroon & 
Yarin Gal. Benchmarking Bayesian Deep Learning with Diabetic
Retinopathy Diagnosis, 2018

Medical Diagnosis
+

Urban Driving (fishyscapes)
+

[Galaxy Zoo Challenge]
+
…
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WildDash
Zendel et al, ECCV 2018
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Method
WildDash + 
FoggyZurich + 
Mapillary

Cityscapes

max J mIoU mIoU

Dropout 42% (30%) (74%)

Embedding 41% (46%) (80%)

Softmax 44% (46%) (80%)

no big difference between methods

benchmarking challenge: decreasing
segmentation performance can make
detection easier

misclassification mixes many effects

no method is much better than
softmax entropy

Softmax is a good indicator for
misclassifications.
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Open-Set Learned Control

Richter & Roy, RSS’17 34
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Miller et al., ICRA 2018

Open-Set Detections
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Open-Set Segmentation
Input Trained Network Feature Density

Training: Learn how background 
and foreground look like.

Marchal et al., arXiv, 2019 36
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How well does uncertainty
estimation actually work?

We can measure it, and
measurements are clear:
More work to be done!

Challenges
Match method to problem
too much noise for safety
unsupervised methods 
lack behind
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Input Softmax Entropy Epistemic Uncertainty (MI) Dirichlet Entropy

DeepLabv3+ Prediction kNN Embedding Density Learned Embedding Density Void Classifier

Figure 2. Example of out-of-distribution (OoD) detection: We evaluate the ability of Bayesian (top) and non-Bayesian (bottom) methods
to segment OoD objects (here a dog) based on a semantic segmentation model. Better methods should assign a high score (dark) to pixels
belonging to the object only, and a low score (white) to in-distribution (background) pixels. The semantic prediction is not sufficient.

ods to semantic segmentation that were originally designed
for image classification, with examples listed in Figure 2.
Because segmentation networks are much more complex
and have high computational costs, this adaptation is not
trivial, and we suggest different approximations to over-
come these challenges.

Our experiments show that the embeddings of interme-
diate layers hold important information for anomaly detec-
tion. Based on recent work on generative models, we de-
velop a novel method using density estimation in the em-
bedding space. However, we also show that varying visual
appearance can mislead both feature-based and other meth-
ods. None of the evaluated methods achieves the accuracy
required for safety-critical applications. We conclude that
these remain open problems, with our benchmark enabling
the community to measure progress and build upon the best
performing methods so far.

To summarize, our contributions are the following:

– The first public benchmark evaluating pixel-wise uncer-
tainty estimates in semantic segmentation, with a dy-
namic, self-updating dataset for anomaly detection.

– We report an extensive evaluation with diverse state-
of-the-art approaches to uncertainty estimation, adapted
to the semantic segmentation task, and present a novel
method for anomaly detection.

– We show a clear gap between the alleged capabilities
of established methods and their performance on this
real-world task, thereby confirming the necessity of our
benchmark to support further research in this direction.

2. Related Work

Here we review the most relevant works in semantic seg-
mentation and their benchmarks, and methods that aim at
providing a confidence estimate of the output of deep net-
works.

2.1. Semantic Segmentation

State-of-the-art models are fully-convolutional deep net-
works trained with pixel-wise supervision. Most works [1,
24–26] adopt an encoder-decoder architecture that initially
reduces the spatial resolution of the feature maps, and sub-
sequently upsamples them with learned transposed convo-
lution, fixed bilinear interpolation, or unpooling. Addition-
ally, dilated convolutions or spatial pyramid pooling enlarge
the receptive field and improve the accuracy.

Popular benchmarks compare methods on the segmen-
tation of objects [27] and urban scenes. In the latter case,
Cityscapes [9] is a well-established dataset depicting street
scenes in European cities with dense annotations for a lim-
ited set of classes. Efforts have been made to provide
datasets with increased diversity, either in terms of environ-
ments, with WildDash [28], which incorporates data from
numerous parts of the world, or with Mapillary [29], which
adds many more classes. Like ours, some datasets are ex-
plicitly derived from Cityscapes, the most relevant being
Foggy Cityscapes [22], which overlays synthetic fog onto
the original dataset to evaluate more difficult driving condi-
tions. The Robust Vision Challenge2 also assesses general-
ization of learned models across different datasets.

Robustness and reliability are only evaluated by all these
benchmarks through ranking methods according to their
accuracy, without taking into accounts the uncertainty of
their predictions. Additionally, despite one cannot assume
that models trained with closed-world data will only en-
counter known classes, these scenarios are rarely quanti-
tatively evaluated. To our knowledge, WildDash [28] is
the only benchmark that explicitly reports uncertainty w.r.t.
OoD examples. These are however drawn from a very lim-
ited set of full-image outliers, while we introduce a diverse
set of objects, as WildDash mainly focuses on accuracy.

2
http://www.robustvision.net/

2

Fishyscapes Web March 2019

Softmax Entropy Monte-Carlo Dropout Dirichlet Prior Network

Learning a Void ClassDensity in EmbeddingkNN in Embedding

Input

DeepLabv3+
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Fishyscapes Lost & Found

Softmax Entropy Monte-Carlo Dropout Dirichlet Prior Network

Learning a Void ClassDensity in EmbeddingkNN in Embedding

Input

DeepLabv3+
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Fishyscapes Lost & Found

Softmax Entropy Monte-Carlo Dropout Dirichlet Prior Network

Learning a Void ClassDensity in EmbeddingkNN in Embedding

Input

DeepLabv3+
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