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WHY TO CARE ABOUT UNCERTAINTY
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BUT WHEN YOU DON’T CARE...
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OUTLINE

1. Characterizing uncertainty
2. Uncertainty at work
3. BayesSIM: Uncertainty for Sim2Real
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1. CHARACTERIZING UNCERTAINTY
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TYPES OF UNCERTAINTY

Epistemic: what we should know but we don’t. For
example, model uncertainty, lack of data, simplifications.

Aleatoric: natural stochasticity of the process. For
example, when you run the experiment multiple times,
and have a different answer every time.

Measurement: incapacity to fully observe the variable of
interest. For example, noisy sensors.
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UNCERTAINTY IN REGRESSION
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2. UNCERTAINTY AT WORK

IIIIIIII



EPISTEMIC AT WORK

Goal: Find the maximum of an unknown, noisy and costly to evaluate function f
ldea: Choose next sampling location X by maximising an acquisition function §
over the domain of the GP model of the function.
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Algorithm 1 Bayesian Optimisation
1: x;: chosen sampling point at iteration <.
2: s: acquisition function. __—
3: f: unknown function. (terrain roughness) T
4: for:=1,2,3,... do
Find x; = arg max,_ s(x)
Acquire a sample from f at location x;.
Update the GP model of f with the new sample .

8: end for Y

observation (x)

¥ acquisition max

posterior mean (u(-))

posterior uncertainty
(u(-) £o(-)) 4
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Acquisition value
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BAYESIAN OPTIMISATION

Model and observations
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PLANNING TO IMPROVE PREDICTIONS

Inf. Gain

Random

UCB achieves lower error, because it models m

R. Marchant, F. Ramos, Bayesian  Optimisation  for Informative  Continuous  Path Planning.
In IEEE International Conference on Robotics and Automation (ICRA), 2014.

R. Marchant, F. Ramos, S. Sanner, Sequential Bayesian Optimisation for Spatial-Temporal Monitoring. In Uncertainty in 12 <INVIDIA.
Artificial Intelligence (UAI), 2014
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ALEATORIC AT WORK

Learning motion patterns

[Zhi, Ott, Ramos. Kernel Trajectory Maps for Multi-
Modal Probabilistic Motion Prediction. CoRL’19]
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KERNEL TRAJECTORY MAPS FOR MULTI-MODAL
PROBABILISTIC MOTION PREDICTION
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Figure 1: Observed waypoints (blue) and predicted trajectories (green with magenta end-points)
sampled from KTM outputs. The ground truth trajectory is indicated in red. The probabilistic and
multi-modal nature of KTMs is able to capture the complexity of the motion patterns.
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3. BAYESSIM: UNCERTAINTY FOR SIM2REAL



POWERFUL SIMULATORS VS REALITY

All simulators are wrong, some are useful
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How to estimate the uncertainty in simulators? 16 SAnvioia



BayesSim
All simulators are wrong, some are useful

[Ramos, Possas, Fox. BayesSim: adaptive domain
randomization via probabilistic inference for robotics
simulators. RSS’19]
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LIKELIHOOD-FREE INFERENCE

Attempts to estimate p(@|x = x™) x p(@)p(x = x7|@) , where 6 are simulator parameters.
We treat simulators as black-box generative models, g(8) = x.
However, the likelihood function, p(x = x7|0), is not available as the simulator is a black box.

Instead, we perform inference by computing
p(6)
p(6)

p(Olx =x") x qs(0|x = x")

where q4(8|x = x7) is a mixture of Gaussians given by ¢,(6|x) = Z N (0| s, i)

p(0) and p(0) are the prior and proposal priors respectively.
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MIXTURE DENSITY WITH RFF

The mixture model approximating the posterior,

4y (0]x) = Zak/\/ O|pr, X

is parametrized by

o = softmax( W be)

HE = W‘ Kk
diag(Xy) = mELU(W+ bs,)

where ®(x) are random Fourier features.

We compute these features and learn all other parameters of the mixture:

¢ — (Waa baa {Wuk ) buk ) WEk’ bzk}£}<:1)
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HILBERT SPACES AS PRIORS
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RANDOM FOURIER FEATURES

Following Bochner’s Theorem, a stationary kernel, defining a Hilbert space, can be
represented in terms of its Fourier transform,

k(T) = /K(w)e_i“’"’dw

where T = x — x' and K (w) is its spectral representation. This can be seen as an expectation
that can approximated as,

N
1 —lwn X — WX’
Br) e (e ) (e ) = a(x)TB(x)
n=1
and
1
®(x) = —|cos(w1x+b1),...,cos (w,x+ by,),
—i - sin (w1x 4+ b1),...,—1 - sin (wpx + by)]. I



RECOVERING THE FINAL RESULT

When the prior is different from the proposal prior, we need to adjust the posterior as
follows, ,
gy (0]x")
p(0)
Assuming a Gaussian prior, the posterior is given by

P(Olx =x") =) ap N (6|}, )
k

where S

POIx = x7) o

And the coefficients are:
A\, = logdet ), — logdet X — log det 3} + pi Xy,

— Mg 2 [,l;() l’l’k E/ 1l’l’k 24 SANVIDIA.



SUFFICIENT STATISTICS

Since trajectories of state and action pairs might be very high dimensional, we reduce the
dimensionality using some sufficient statistics. Formally, observations

x = (S, A)
where S = {s'}I are statesand A = {at}] | are actions.

We use sufficient statistics that are inspired by other problems in likelihood-free inference
such as cross correlation between states and actions, means, and variances,

¥(S,A) = ({{i, A}, 2 Elr], Var[r))

'i:l,j:17
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DOMAIN RANDOMIZATION WITH BAYES-SIM

In reinforcement learning, we want to learn a policy n(s; f), parametrized by £, that

optimizes the objective,
T—1
> (s, at)|ﬁ] ]

t—0

J(B) =Eq |E,

where r(s;, a;) is the reward of taking action a, in state s,.
We can use the produced by BayesSim to estimate the expectation Eg.
We can the policy using multiple simulators, each from the posterior.

The policy obtained is more robust and likely to work on the real robot.
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CART POLE EXAMPLE
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Fig. 2: Example of posterior marginals obtained for the CartPole problem. Left: Posterior for parameter length. Right: Posterior
for parameters masspole. Note that the posterior marginals capture the multimodality of the problem where two explanations
seem likely, a longer pole length with a lighter mass or vice versa.

27

NVIDIA.



length vs masspole

True value

2.00

125

masspole
5
3

0.75

0.50

0.00
0.00

CART POLE EXAMPLE

masspole

length vs masspole

2.00

|
125 |
1.00
0.75 !
0.50 .
0.25 .
0.00

0.00 0.25 0.50 0.75 1.00 125 150 175 2.00

length

0.00

masspole

length vs masspole

True value

150

125

e
o
S

0.75

0.50

0.00
0.00

28 <ANVIDIA.



PUSH AND SLIDE

All simulators are wrong, some are useful,
but many, together, can be much more useful
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FETCH SLIDE
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FETCH PUSH

Distribution over friction coefficient
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RESULTS
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Fig. 4: Accumulated rewards for CartPole policies trained with PPO across parameter values. Top left: Policy trained by
randomizing with the prior for parameter length. Top right: Policy trained by randomizing with the prior for parameter masspole.
Bottom left: Policy trained by randomizing with the posterior for parameter /ength. Bottom right: Policy trained by randomizing
with the posterior for parameter masspole.
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RESULTS

Problem Parameter Uniform prior | Rejection ABC e-Free BayesSim RFF | BayesSim NN
CartPole pole length [0.1,2.0] -0.34240.15 -0.211+0.07 -0.609+0.39 -0.657+£0.25
pole mass (0.1, 2.0] 0.03240.21 0.056+0.14 0.973 + 0.26 0.633+ 0.52
Pendulum dt 10.01,0.3] 2.10141.04 2.30740.84 3.19240.30 3.199+0.17
Mountain Car | power 0.0005, 0.1] 3.69+1.21 3.80041.06 3.86340.52 3.901+0.2
Acrobot link mass 1 0.5, 2.0] 1.7044-0.82 1.883+0.79 2.0461-0.37 1.3314+0.22
link mass 2 (0.5, 2.0] 1.8324-0.93 2.2371+0.76 0.32141.85 1.51340.39
link length 1 [0.1,1.5] 2.4211+0.75 2.135£0.50 2.072£0.76 1.856+0.18
link length 2 [0.5,1.5] -0.521+0.36 -0.703£0.16 -0.148+0.19 -0.672+0.09
Hopper lateral friction 10.3,0.5] 3.03240.43 3.15440.81 2.62240.64 3.3911+0.08
Fetch Push friction [0.1,1.0] 1.332+0.54 2.013£0.09 2.423+0.07 2.4044-0.05
Fetch Slide friction 0.1, 1.0] 1.0144-0.38 1.61440.12 2.39110.06 2.11140.03
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INFERRING GRANULAR PARAMETERS

[Matl et al. Inferring the Material Properties of
Granular Media for Robotic Tasks. Submitted to ICRA’20]

Barley poured at 30cm: Sim: 1, Real: 3

Simulation Real-world (view 1) Real-world (view 2)



INFERRING MATERIAL PROPERTIES OF GRANULAR MEDIA

Physical Extraction of
setup summary statistics
(x1) M from depth image

(T(x'))

Granular matenal
parameter inference
(0| T(x®) = T(x1)))

Sampling

granular

matenal Simulation with Extraction of summary
parameters parameters 0 statistics from simulation
(0~p(0)) (%= g(0)) (7(x*))
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The framework is used to estimate the simulation values for the coefficients of
sliding friction, rolling friction, and restitution
for couscous




Inferring pouring height Pouring Couscous Pouring Barley
for ring pattern Simulation Robot Simulation Robot

Number of grains that bounce out at different heights (3 pours each)

I5cm 0,0,0 0,0,0 0,0,0 0,0,0
30cm 23,20, 18 12,15, 8 1,0,0 3,2,3
45cm 52,50, 53 46, 36, 44 4,12, 10 22, 11,24
60cm 133,90, 116 115,95, 127 35, 48, 49 33, 40, 42

Fig. 6: Two granular manipulation tasks were tested. (Left): The height of
the funnel 1is inferred to create a desired ring shape. We demonstrate this by
creating a pattern of three concentric rings. (Right): A real-life scene pouring
grains into a bowl is recreated in simulation. At various different heights,
both the simulation of couscous and barley perform well in estimating the
magnitude of grains to leave the cereal bowl.
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TAKE HOME MESSAGES

Epistemic and aleatoric uncertainty can help to develop
algorithms for different purposes (active learning, multi-
modal trajectories).

Bayesian likelihood-free inference is a powerful tool to
connect black-box models with data-driven methods.

BayesSim infers the uncertainty over simulation
parameters and use it for robust Sim2Real.



SUMMARY




