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WHY TO CARE ABOUT UNCERTAINTY
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BUT WHEN YOU DON’T CARE…
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1. CHARACTERIZING UNCERTAINTY
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TYPES OF UNCERTAINTY

• Epistemic: what we should know but we don’t. For 
example, model uncertainty, lack of data, simplifications.

• Aleatoric: natural stochasticity of the process. For 
example, when you run the experiment multiple times, 
and have a different answer every time. 

• Measurement: incapacity to fully observe the variable of 
interest. For example, noisy sensors.
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UNCERTAINTY IN REGRESSION

Problem

Objective
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2. UNCERTAINTY AT WORK
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EPISTEMIC AT WORK
Bayesian Optimisation

Goal: Find the maximum of an unknown, noisy and costly to evaluate function   . 
Idea: Choose next sampling location    by maximising an acquisition function     
over the domain of the GP model of the function.
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BAYESIAN OPTIMISATION
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PLANNING TO IMPROVE PREDICTIONS

1
2

BO

R. Marchant, F. Ramos, S. Sanner, Sequential Bayesian Optimisation for Spatial-Temporal Monitoring. In Uncertainty in
Artificial Intelligence (UAI), 2014

R. Marchant, F. Ramos, Bayesian Optimisation for Informative Continuous Path Planning.
In IEEE International Conference on Robotics and Automation (ICRA), 2014.

BO

Inf. Gain

Random
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ALEATORIC AT WORK
Learning motion patterns

[Zhi, Ott, Ramos. Kernel Trajectory Maps for Multi-
Modal Probabilistic Motion Prediction. CoRL’19]
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KERNEL TRAJECTORY MAPS FOR MULTI-MODAL 
PROBABILISTIC MOTION PREDICTION

Figure 1: Observed waypoints (blue) and predicted trajectories (green with magenta end-points)
sampled from KTM outputs. The ground truth trajectory is indicated in red. The probabilistic and
multi-modal nature of KTMs is able to capture the complexity of the motion patterns.

of KTMs. The probabilistic nature of the output provides an estimate for uncertainty, which can be42

used for robust planning and decision making. We contribute the KTM, a method that:43

1. is trajectory history aware and captures dependencies over the entire trajectory;44

2. models the output as a mixture of stochastic process, providing a multi-modal distribution45

over possible trajectories;46

3. represents realised trajectories as continuous functions, allowing them to be queried at47

arbitrary time resolution.48

2 Related Work49

Kernel Trajectory Maps (KTMs) learn motion patterns in an environment, and represent sampled50

outputs as continuous trajectories. i.e. trajectories that can be queried at arbitrarily fine time resolu-51

tions. Here we briefly revisit literature on modelling motion dynamics and continuous trajectories.52

2.1 Motion Modelling53

Some of the simplest approaches to model trajectory patterns are kinematic models that make ex-54

trapolations based on a sequence of observed coordinates. Popular examples include the constant55

velocity and constant acceleration models [10]. Some other attempts to understand dynamics take56

the approach of extending occupancy mapping beyond static environments by building occupancy57

representations along time [11, 12, 13]. This approach tends to be memory intensive, limiting scal-58

ability.59

Other recent approaches have incorporated global spatial [2, 3, 4] and temporal information [14, 15].60

The authors of [2] propose Directional grid maps, a model that learns the distribution of motion61

directions in each grid cell of a discretised environment. This is achieved by fitting a mixture of62

von-Mises distributions on the motion directions attributed to each cell. A similar method is also63

presented in [3], where a map of velocity distributions in the environment is modelled by semi-64

wrapped Gaussian mixture models. Both methods are able to capture the uncertainty of motion at a65

given point coordinate, but require forward sampling to obtain trajectories.66

2.2 Continuous Trajectories67

Continuous representations of trajectories, often modelled by a Gaussian processes [16] or a sparse68

low rank approximations of Gaussian processes [17], have arisen in previous works for trajectory69

estimation [18] and motion planning [19, 20? ]. In this work, we also formulate a method to produce70

continuous trajectories, and then leverage continuous trajectories for extrapolation, rather than the71

estimation and interpolation problems addressed in previous works.72

3 Methodology73

3.1 Problem Formulation and Overview74

We work with continuous trajectory outputs, ⌅, and discrete trajectories inputs, ⇠. Discrete trajec-75

tories are an ordered set of waypoint coordinates indexed by time, ⇠ = {(xt, yt)}Tt=1. Continuous76

2
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3. BAYESSIM: UNCERTAINTY FOR SIM2REAL
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POWERFUL SIMULATORS VS REALITY
All simulators are wrong, some are useful

Closing the Sim-to-Real Loop:

Adapting Simulation Randomization with Real World Experience

Yevgen Chebotar1,2 Ankur Handa1 Viktor Makoviychuk1

Miles Macklin1,3 Jan Issac1 Nathan Ratliff1 Dieter Fox1,4

Fig. 1. Policies for opening a cabinet drawer and swing-peg-in-hole tasks trained by alternatively performing reinforcement learning with multiple agents
in simulation and updating simulation parameter distribution using a few real world policy executions.

Abstract— We consider the problem of transferring policies

to the real world by training on a distribution of simulated

scenarios. Rather than manually tuning the randomization of

simulations, we adapt the simulation parameter distribution

using a few real world roll-outs interleaved with policy training.

In doing so, we are able to change the distribution of simulations

to improve the policy transfer by matching the policy behavior

in simulation and the real world. We show that policies trained

with our method are able to reliably transfer to different robots

in two real world tasks: swing-peg-in-hole and opening a cabinet

drawer. The video of our experiments can be found at https:
//sites.google.com/view/simopt.

I. INTRODUCTION

Learning continuous control in real world complex en-
vironments has seen a wide interest in the past few years
and in particular focusing on learning policies in simula-
tors and transferring them to the real world, as we still
struggle with finding ways to acquire the necessary amount
of experience and data in the real world directly. While
there have been recent attempts on learning by collecting
large scale data directly on real robots [1, 2, 3, 4], such an
approach still remains challenging as collecting real world
data is prohibitively laborious and expensive. Simulators
offer several advantages, e.g. they can run faster than real-
time and allow for acquiring large diversity of training data.
However, due to the imprecise simulation models and lack
of high fidelity replication of real world scenes, policies
learned in simulations often cannot be directly applied on
real world systems, a phenomenon also known as the reality
gap [5]. In this work, we focus on closing the reality gap by
learning policies on distributions of simulated scenarios that
are optimized for a better policy transfer.

Training policies on a large diversity of simulated sce-
narios by randomizing relevant parameters, also known as
domain randomization, has shown a considerable promise for

1NVIDIA, USA
2University of Southern California, Los Angeles, CA, USA
3University of Copenhagen, Copenhagen, Denmark
4University of Washington, Seattle, WA, USA
@ychebota@usc.edu,{ahanda,vmakoviychuk,

mmacklin,jissac,nratliff,dieterf}@nvidia.com

the real world transfer in a range of recent works [6, 7, 8, 9].
However, design of the appropriate simulation parameter
distributions remains a tedious task and often requires a
substantial expert knowledge. Moreover, there are no guar-
antees that the applied randomization would actually lead to
a sensible real world policy as the design choices made in
randomizing the parameters tend to be somewhat biased by
the expertise of the practitioner. In this work, we apply a
data-driven approach and use real world data to adapt sim-
ulation randomization such that the behavior of the policies
trained in simulation better matches their behavior in the
real world. Therefore, starting with some initial distribution
of the simulation parameters, we can perform learning in
simulation and use real world roll-outs of learned policies
to gradually change the simulation randomization such that
the learned policies transfer better to the real world without
requiring the exact replication of the real world scene in
simulation. This approach falls into the domain of model-
based reinforcement learning. However, we leverage recent
developments in physics simulations to provide a strong
prior of the world model in order to accelerate the learning
process. Our system uses partial observations of the real
world and only needs to compute rewards in simulation,
therefore lifting the requirement for full state knowledge or
reward instrumentation in the real world.

II. RELATED WORK

The problem of finding accurate models of the robot and
the environment that can facilitate the design of robotic con-
trollers in the real world dates back to the original works on
system identification [10, 11]. In the context of reinforcement
learning (RL), model-based RL explored optimizing policies
using learned models [12]. In [13, 14], the data from real
world policy executions is used to fit a probabilistic dynamics
model, which is then used for learning an optimal policy.
Although our work follows the general principle of model-
based reinforcement learning, we aim at using a simulation
engine as a form of parameterized model that can help us to
embed prior knowledge about the world.
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Abstract— We consider the problem of transferring policies

to the real world by training on a distribution of simulated

scenarios. Rather than manually tuning the randomization of

simulations, we adapt the simulation parameter distribution

using a few real world roll-outs interleaved with policy training.

In doing so, we are able to change the distribution of simulations

to improve the policy transfer by matching the policy behavior

in simulation and the real world. We show that policies trained

with our method are able to reliably transfer to different robots

in two real world tasks: swing-peg-in-hole and opening a cabinet

drawer. The video of our experiments can be found at https:
//sites.google.com/view/simopt.

I. INTRODUCTION

Learning continuous control in real world complex en-
vironments has seen a wide interest in the past few years
and in particular focusing on learning policies in simula-
tors and transferring them to the real world, as we still
struggle with finding ways to acquire the necessary amount
of experience and data in the real world directly. While
there have been recent attempts on learning by collecting
large scale data directly on real robots [1, 2, 3, 4], such an
approach still remains challenging as collecting real world
data is prohibitively laborious and expensive. Simulators
offer several advantages, e.g. they can run faster than real-
time and allow for acquiring large diversity of training data.
However, due to the imprecise simulation models and lack
of high fidelity replication of real world scenes, policies
learned in simulations often cannot be directly applied on
real world systems, a phenomenon also known as the reality
gap [5]. In this work, we focus on closing the reality gap by
learning policies on distributions of simulated scenarios that
are optimized for a better policy transfer.

Training policies on a large diversity of simulated sce-
narios by randomizing relevant parameters, also known as
domain randomization, has shown a considerable promise for
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the real world transfer in a range of recent works [6, 7, 8, 9].
However, design of the appropriate simulation parameter
distributions remains a tedious task and often requires a
substantial expert knowledge. Moreover, there are no guar-
antees that the applied randomization would actually lead to
a sensible real world policy as the design choices made in
randomizing the parameters tend to be somewhat biased by
the expertise of the practitioner. In this work, we apply a
data-driven approach and use real world data to adapt sim-
ulation randomization such that the behavior of the policies
trained in simulation better matches their behavior in the
real world. Therefore, starting with some initial distribution
of the simulation parameters, we can perform learning in
simulation and use real world roll-outs of learned policies
to gradually change the simulation randomization such that
the learned policies transfer better to the real world without
requiring the exact replication of the real world scene in
simulation. This approach falls into the domain of model-
based reinforcement learning. However, we leverage recent
developments in physics simulations to provide a strong
prior of the world model in order to accelerate the learning
process. Our system uses partial observations of the real
world and only needs to compute rewards in simulation,
therefore lifting the requirement for full state knowledge or
reward instrumentation in the real world.

II. RELATED WORK

The problem of finding accurate models of the robot and
the environment that can facilitate the design of robotic con-
trollers in the real world dates back to the original works on
system identification [10, 11]. In the context of reinforcement
learning (RL), model-based RL explored optimizing policies
using learned models [12]. In [13, 14], the data from real
world policy executions is used to fit a probabilistic dynamics
model, which is then used for learning an optimal policy.
Although our work follows the general principle of model-
based reinforcement learning, we aim at using a simulation
engine as a form of parameterized model that can help us to
embed prior knowledge about the world.
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BayesSim
All simulators are wrong, some are useful

BayesSim
p(SimParameters | RealData)

Posterior

RealData

Simulator 1
Simulator 2

Simulator 3
Simulator 4

Prior
p(SimParameters)

[Ramos, Possas, Fox. BayesSim: adaptive domain 
randomization via probabilistic inference for robotics 
simulators. RSS’19]
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LIKELIHOOD-FREE INFERENCE

Attempts to estimate  𝑝 𝜽 𝒙 = 𝒙𝑟 ∝ 𝑝 𝜽 𝑝 𝒙 = 𝒙𝒓 𝜽 , where 𝜃 are simulator parameters.

We treat simulators as black-box generative models, 𝑔 𝜃 = 𝒙.

However, the likelihood function, 𝑝 𝒙 = 𝒙𝑟 𝜃 , is not available as the simulator is a black box.

Instead, we perform inference by computing 

where 𝑞𝜙(𝜽|𝒙 = 𝒙/) is a mixture of Gaussians given by

𝑝 𝜽 and 1𝑝(𝜽) are the prior and proposal priors respectively. 

From generative models to Bayesian inference

robotics are real valued at 2 RD and environments are usually
partially observed so that the entire history of observation,
action pairs ⌘ = {st,at,ot}

T�1
t=0 . The goal is to maximize

the expected sum of discounted future rewards by following a
policy ⇡(at|st;�), parametrized by �,

J(�) = E⌘

"
T�1X

t�0

�(t)r(st,at)|�

#
. (1)

Many approaches in reinforcement learning make use of the
recursive relationship known as the Bellman equation where
Q⇡ is the action-value function describing the expected return
after taking an action at, in state st and thereafter following
policy ⇡.

Q⇡(st,at) = Ert,st+1 [r(st,at) + �Eat+1 [Q
⇡(st+1,at+1)]] (2)

In recent years, the advancements in traditional RL methods
have allowed their application to control tasks with continuous
action spaces. Inheriting ideas from DQN [19], Deep Deter-
ministic Policy Gradients have been relatively successful in a
wide range of control problems. The main caveat of DDPG
algorithms is that they rely on efficient experience sampling to
perform well. Improving the way how experience is collected
is one of most important topics in today’s RL community.
Experience Replay [17] and Prioritized Experience replay
[29] still performs poorly in a repertoire of robotics tasks
where the reward signal is sparse. Hindsight Experience replay
(HER) [1], on the other hand, performs well in this scenario
as it breaks down single trajectories/goals into smaller ones
and, thus, provides the policy optimization algorithm with
better reward signals. HER has been mostly based in a recent
RL concept: Multi-Goal learning with Universal Function
Approximators [28].

Another set of successful policy search algorithms is based
on optimization through trust regions. They are less sensitive
to the experience sampling problem mentioned above. The
maximum step size for exploration is determined by its trust
region and the optimal point is then evaluated progressively
until convergence has been reached. The main idea is that
updates are always limited by their own trust region, and,
therefore, learning speed is better controlled. Proximal Policy
Optimization [31] and Trust Region Policy optimization [30]
have applied these ideas providing state of the art performance
in a wide range of control problems.

Both techniques differ on the way they sample experiences.
While the first is an off-policy algorithm - experiences are
generated by a behaviour policy, the second is an on-policy
algorithm where the policy used to generated experience is the
same used to perform the control task. These algorithms will
have comparable performance on different robotics control
scenarios therefore should be considered the current state of
the art on such problems.

IV. BAYESSIM

A. Problem setup
Following [22], BayesSim approximates the intractable pos-

terior p(✓|x = xr) by directly learning a conditional density

(a)

(b)

Fig. 1: (a) Fetch Push task, the robot has full access to the
entire table and multiple iterations with the object. (b) Fetch
Slide task, the robot has usually only one shot at pushing the
object to its target with limited access to the table.

q�(✓|x) parameterised by parameters �. As we shall see,
q�(✓|x) takes the form of a mixture density random feature
network. To learn the parameters � we first generate a dataset
with N pairs (✓n,xn) where ✓n is drawn independently from
a distribution p̃(✓) referred to as the proposal prior. xn is
obtained by running the simulator with parameter ✓n such
that xn = g(✓n). In [22] the authors show that q�(✓|x) is
proportional to p̃(✓)

p(✓)p(✓|x) when the likelihood
Q

n q�(✓n|xn)
is maximised w.r.t. �. We follow a similar procedure and
maximise the log likelihood,

L(�) =
1

N

X

n

log q�(✓|xn) (3)

to determine �. After this is done, an estimate of the posterior
is obtained by

p̂(✓|x = xr) /
p(✓)

p̃(✓)
q�(✓|x = xr), (4)

where p(✓) is the desirable prior that might be different than
the proposal prior. In the case when p̃(✓) = p(✓), it follows

that p̂(✓|x = xr) = q�(✓|x = xr). When p̃(✓) 6= p(✓) we
need to adjust the posterior as detailed in Section IV-E.

B. Mixture density random feature networks

We model the conditional density q�(✓|x) as a mixture of
K Gaussians,

q�(✓|x) =
X

k

↵kN (✓|µk,⌃k), (5)

where ↵ = (↵1, . . . ,↵K) are mixing coefficients, {µk} are
means and {⌃k} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing ↵, µ and ⌃. We
justify and describe these features in the next section.

Denoting  (x) as the feature vector, the mixing coeficients
are calculated as

↵ = softmax(W↵�(x) + b↵). (6)

Note that the operator softmax(z)i = exp(zi)PK
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk�(x) + bµk . (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(⌃k) = mELU(W⌃k�(x) + b⌃k) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

(
↵(ez � 1) + 1 for z  0

z + 1 for z > 0
(9)

to enforce positive values. The diagonal parametrization as-
sumes independence between the dimensions of the simulator
parameters ✓. This turns out to be not too restrictive if the
number of components in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

� = (W↵,b↵, {Wµk ,bµk ,W⌃k ,b⌃k}
K
k=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

�(x) = �(W2(�(W1x+ b1)) + b2), (11)

where �(·) is a sigmoid function; we use �(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features
BayesSim can use random Fourier features [25] instead of

neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/

p
s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(⌧ ), where ⌧ = kx � x0

k, by a dot product
k(⌧ ) ⇡ �(x)T�(x) of finite dimensional features �(x).
This is possible by first applying the Bochner’s theorem [33]
stated below:

Theorem 1 (Bochner’s Theorem) A shift invariant kernel k(⌧ ),
⌧ 2 RD, associated with a positive finite measure dµ (!) can
be represented in terms of its Fourier transform as,

k(⌧ ) =

Z

RD

e�i!·⌧dµ (!) . (12)

The proof can be found in [12]. When µ has density K(!)
then K represents the spectral distribution for a positive semi-
definite k. In this case k(⌧ ) and K(!) are Fourier duals:

k(⌧ ) =

Z
K(!)e�i!·⌧d!. (13)

Approximating Equation 13 with a Monte Carlo estimate
with N samples, yields

k(⌧ ) ⇡
1

N

NX

n=1

(e�i!nx)(e�i!nx
0
), (14)

where ! is sampled from the density K(!).
Finally, using Euler’s formula (e�ix = cos(x) � i sin(x))

we recover the features:

�(x) =
1

p
N

[cos (!1x+ b1) , . . . , cos (!nx+ bn) ,

�i · sin (!1x+ b1) , . . . ,�i · sin (!nx+ bn)].
(15)

where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
kernels proving flexibility in introducing prior knowledge by
selecting a suitable kernel for the problem. For example, the
RBF kernel can be approximated using the features above with
! ⇠ N (0, 2��2I) and b ⇠ U [�⇡,⇡]. � is a hyperparameter
that corresponds to the kernel length scale and is usually set
up with cross validation.
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MIXTURE DENSITY WITH RFF
We learn feature maps for the Gaussian mixture model

The mixture model approximating the posterior,

is parametrized by

where Φ(𝒙) are random Fourier features. 

We compute these features and learn all other parameters of the mixture: 

that p̂(✓|x = xr) = q�(✓|x = xr). When p̃(✓) 6= p(✓) we
need to adjust the posterior as detailed in Section IV-E.

B. Mixture density random feature networks

We model the conditional density q�(✓|x) as a mixture of
K Gaussians,

q�(✓|x) =
X

k

↵kN (✓|µk,⌃k), (5)

where ↵ = (↵1, . . . ,↵K) are mixing coefficients, {µk} are
means and {⌃k} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing ↵, µ and ⌃. We
justify and describe these features in the next section.

Denoting  (x) as the feature vector, the mixing coeficients
are calculated as

↵ = softmax(W↵�(x) + b↵). (6)

Note that the operator softmax(z)i = exp(zi)PK
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk�(x) + bµk . (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(⌃k) = mELU(W⌃k�(x) + b⌃k) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

(
↵(ez � 1) + 1 for z  0

z + 1 for z > 0
(9)

to enforce positive values. The diagonal parametrization as-
sumes independence between the dimensions of the simulator
parameters ✓. This turns out to be not too restrictive if the
number of components in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

� = (W↵,b↵, {Wµk ,bµk ,W⌃k ,b⌃k}
K
k=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

�(x) = �(W2(�(W1x+ b1)) + b2), (11)

where �(·) is a sigmoid function; we use �(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features
BayesSim can use random Fourier features [25] instead of

neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/

p
s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(⌧ ), where ⌧ = kx � x0

k, by a dot product
k(⌧ ) ⇡ �(x)T�(x) of finite dimensional features �(x).
This is possible by first applying the Bochner’s theorem [33]
stated below:

Theorem 1 (Bochner’s Theorem) A shift invariant kernel k(⌧ ),
⌧ 2 RD, associated with a positive finite measure dµ (!) can
be represented in terms of its Fourier transform as,

k(⌧ ) =

Z

RD

e�i!·⌧dµ (!) . (12)

The proof can be found in [12]. When µ has density K(!)
then K represents the spectral distribution for a positive semi-
definite k. In this case k(⌧ ) and K(!) are Fourier duals:

k(⌧ ) =

Z
K(!)e�i!·⌧d!. (13)

Approximating Equation 13 with a Monte Carlo estimate
with N samples, yields

k(⌧ ) ⇡
1

N

NX

n=1

(e�i!nx)(e�i!nx
0
), (14)

where ! is sampled from the density K(!).
Finally, using Euler’s formula (e�ix = cos(x) � i sin(x))

we recover the features:

�(x) =
1

p
N

[cos (!1x+ b1) , . . . , cos (!nx+ bn) ,

�i · sin (!1x+ b1) , . . . ,�i · sin (!nx+ bn)].
(15)

where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
kernels proving flexibility in introducing prior knowledge by
selecting a suitable kernel for the problem. For example, the
RBF kernel can be approximated using the features above with
! ⇠ N (0, 2��2I) and b ⇠ U [�⇡,⇡]. � is a hyperparameter
that corresponds to the kernel length scale and is usually set
up with cross validation.

that p̂(✓|x = xr) = q�(✓|x = xr). When p̃(✓) 6= p(✓) we
need to adjust the posterior as detailed in Section IV-E.

B. Mixture density random feature networks

We model the conditional density q�(✓|x) as a mixture of
K Gaussians,

q�(✓|x) =
X

k

↵kN (✓|µk,⌃k), (5)

where ↵ = (↵1, . . . ,↵K) are mixing coefficients, {µk} are
means and {⌃k} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing ↵, µ and ⌃. We
justify and describe these features in the next section.

Denoting  (x) as the feature vector, the mixing coeficients
are calculated as

↵ = softmax(W↵�(x) + b↵). (6)

Note that the operator softmax(z)i = exp(zi)PK
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk�(x) + bµk . (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(⌃k) = mELU(W⌃k�(x) + b⌃k) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

(
↵(ez � 1) + 1 for z  0

z + 1 for z > 0
(9)

to enforce positive values. The diagonal parametrization as-
sumes independence between the dimensions of the simulator
parameters ✓. This turns out to be not too restrictive if the
number of components in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

� = (W↵,b↵, {Wµk ,bµk ,W⌃k ,b⌃k}
K
k=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

�(x) = �(W2(�(W1x+ b1)) + b2), (11)

where �(·) is a sigmoid function; we use �(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features
BayesSim can use random Fourier features [25] instead of

neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/

p
s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(⌧ ), where ⌧ = kx � x0

k, by a dot product
k(⌧ ) ⇡ �(x)T�(x) of finite dimensional features �(x).
This is possible by first applying the Bochner’s theorem [33]
stated below:

Theorem 1 (Bochner’s Theorem) A shift invariant kernel k(⌧ ),
⌧ 2 RD, associated with a positive finite measure dµ (!) can
be represented in terms of its Fourier transform as,

k(⌧ ) =
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e�i!·⌧dµ (!) . (12)

The proof can be found in [12]. When µ has density K(!)
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definite k. In this case k(⌧ ) and K(!) are Fourier duals:

k(⌧ ) =
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Approximating Equation 13 with a Monte Carlo estimate
with N samples, yields
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where ! is sampled from the density K(!).
Finally, using Euler’s formula (e�ix = cos(x) � i sin(x))
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�i · sin (!1x+ b1) , . . . ,�i · sin (!nx+ bn)].
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where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
kernels proving flexibility in introducing prior knowledge by
selecting a suitable kernel for the problem. For example, the
RBF kernel can be approximated using the features above with
! ⇠ N (0, 2��2I) and b ⇠ U [�⇡,⇡]. � is a hyperparameter
that corresponds to the kernel length scale and is usually set
up with cross validation.

that p̂(✓|x = xr) = q�(✓|x = xr). When p̃(✓) 6= p(✓) we
need to adjust the posterior as detailed in Section IV-E.
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↵kN (✓|µk,⌃k), (5)

where ↵ = (↵1, . . . ,↵K) are mixing coefficients, {µk} are
means and {⌃k} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing ↵, µ and ⌃. We
justify and describe these features in the next section.

Denoting  (x) as the feature vector, the mixing coeficients
are calculated as

↵ = softmax(W↵�(x) + b↵). (6)

Note that the operator softmax(z)i = exp(zi)PK
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk�(x) + bµk . (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(⌃k) = mELU(W⌃k�(x) + b⌃k) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

(
↵(ez � 1) + 1 for z  0

z + 1 for z > 0
(9)

to enforce positive values. The diagonal parametrization as-
sumes independence between the dimensions of the simulator
parameters ✓. This turns out to be not too restrictive if the
number of components in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

� = (W↵,b↵, {Wµk ,bµk ,W⌃k ,b⌃k}
K
k=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

�(x) = �(W2(�(W1x+ b1)) + b2), (11)

where �(·) is a sigmoid function; we use �(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features
BayesSim can use random Fourier features [25] instead of

neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/
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s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(⌧ ), where ⌧ = kx � x0

k, by a dot product
k(⌧ ) ⇡ �(x)T�(x) of finite dimensional features �(x).
This is possible by first applying the Bochner’s theorem [33]
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k(⌧ ) =
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Approximating Equation 13 with a Monte Carlo estimate
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where ! is sampled from the density K(!).
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where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
kernels proving flexibility in introducing prior knowledge by
selecting a suitable kernel for the problem. For example, the
RBF kernel can be approximated using the features above with
! ⇠ N (0, 2��2I) and b ⇠ U [�⇡,⇡]. � is a hyperparameter
that corresponds to the kernel length scale and is usually set
up with cross validation.
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q�(✓|x) =
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↵kN (✓|µk,⌃k), (5)

where ↵ = (↵1, . . . ,↵K) are mixing coefficients, {µk} are
means and {⌃k} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing ↵, µ and ⌃. We
justify and describe these features in the next section.

Denoting  (x) as the feature vector, the mixing coeficients
are calculated as

↵ = softmax(W↵�(x) + b↵). (6)

Note that the operator softmax(z)i = exp(zi)PK
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk�(x) + bµk . (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(⌃k) = mELU(W⌃k�(x) + b⌃k) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

(
↵(ez � 1) + 1 for z  0

z + 1 for z > 0
(9)

to enforce positive values. The diagonal parametrization as-
sumes independence between the dimensions of the simulator
parameters ✓. This turns out to be not too restrictive if the
number of components in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

� = (W↵,b↵, {Wµk ,bµk ,W⌃k ,b⌃k}
K
k=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

�(x) = �(W2(�(W1x+ b1)) + b2), (11)

where �(·) is a sigmoid function; we use �(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features
BayesSim can use random Fourier features [25] instead of

neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/

p
s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(⌧ ), where ⌧ = kx � x0

k, by a dot product
k(⌧ ) ⇡ �(x)T�(x) of finite dimensional features �(x).
This is possible by first applying the Bochner’s theorem [33]
stated below:

Theorem 1 (Bochner’s Theorem) A shift invariant kernel k(⌧ ),
⌧ 2 RD, associated with a positive finite measure dµ (!) can
be represented in terms of its Fourier transform as,

k(⌧ ) =
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e�i!·⌧dµ (!) . (12)

The proof can be found in [12]. When µ has density K(!)
then K represents the spectral distribution for a positive semi-
definite k. In this case k(⌧ ) and K(!) are Fourier duals:
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Approximating Equation 13 with a Monte Carlo estimate
with N samples, yields
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where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
kernels proving flexibility in introducing prior knowledge by
selecting a suitable kernel for the problem. For example, the
RBF kernel can be approximated using the features above with
! ⇠ N (0, 2��2I) and b ⇠ U [�⇡,⇡]. � is a hyperparameter
that corresponds to the kernel length scale and is usually set
up with cross validation.

that p̂(✓|x = xr) = q�(✓|x = xr). When p̃(✓) 6= p(✓) we
need to adjust the posterior as detailed in Section IV-E.
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We model the conditional density q�(✓|x) as a mixture of
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q�(✓|x) =
X
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↵kN (✓|µk,⌃k), (5)

where ↵ = (↵1, . . . ,↵K) are mixing coefficients, {µk} are
means and {⌃k} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing ↵, µ and ⌃. We
justify and describe these features in the next section.

Denoting  (x) as the feature vector, the mixing coeficients
are calculated as

↵ = softmax(W↵�(x) + b↵). (6)

Note that the operator softmax(z)i = exp(zi)PK
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk�(x) + bµk . (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(⌃k) = mELU(W⌃k�(x) + b⌃k) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

(
↵(ez � 1) + 1 for z  0

z + 1 for z > 0
(9)

to enforce positive values. The diagonal parametrization as-
sumes independence between the dimensions of the simulator
parameters ✓. This turns out to be not too restrictive if the
number of components in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

� = (W↵,b↵, {Wµk ,bµk ,W⌃k ,b⌃k}
K
k=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

�(x) = �(W2(�(W1x+ b1)) + b2), (11)

where �(·) is a sigmoid function; we use �(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features
BayesSim can use random Fourier features [25] instead of

neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/
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s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(⌧ ), where ⌧ = kx � x0

k, by a dot product
k(⌧ ) ⇡ �(x)T�(x) of finite dimensional features �(x).
This is possible by first applying the Bochner’s theorem [33]
stated below:

Theorem 1 (Bochner’s Theorem) A shift invariant kernel k(⌧ ),
⌧ 2 RD, associated with a positive finite measure dµ (!) can
be represented in terms of its Fourier transform as,

k(⌧ ) =
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e�i!·⌧dµ (!) . (12)

The proof can be found in [12]. When µ has density K(!)
then K represents the spectral distribution for a positive semi-
definite k. In this case k(⌧ ) and K(!) are Fourier duals:

k(⌧ ) =
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Approximating Equation 13 with a Monte Carlo estimate
with N samples, yields
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where ! is sampled from the density K(!).
Finally, using Euler’s formula (e�ix = cos(x) � i sin(x))

we recover the features:

�(x) =
1

p
N

[cos (!1x+ b1) , . . . , cos (!nx+ bn) ,

�i · sin (!1x+ b1) , . . . ,�i · sin (!nx+ bn)].
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where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
kernels proving flexibility in introducing prior knowledge by
selecting a suitable kernel for the problem. For example, the
RBF kernel can be approximated using the features above with
! ⇠ N (0, 2��2I) and b ⇠ U [�⇡,⇡]. � is a hyperparameter
that corresponds to the kernel length scale and is usually set
up with cross validation.
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Following Bochner’s Theorem, a stationary kernel, defining a Hilbert space, can be 
represented in terms of its Fourier transform, 

where 𝜏 = 𝒙 − 𝒙′ and 𝒦(𝝎) is its spectral representation. This can be seen as an expectation 
that can approximated as,  

and

RANDOM FOURIER FEATURES

that p̂(✓|x = xr) = q�(✓|x = xr). When p̃(✓) 6= p(✓) we
need to adjust the posterior as detailed in Section IV-E.

B. Mixture density random feature networks

We model the conditional density q�(✓|x) as a mixture of
K Gaussians,

q�(✓|x) =
X

k

↵kN (✓|µk,⌃k), (5)

where ↵ = (↵1, . . . ,↵K) are mixing coefficients, {µk} are
means and {⌃k} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing ↵, µ and ⌃. We
justify and describe these features in the next section.

Denoting  (x) as the feature vector, the mixing coeficients
are calculated as

↵ = softmax(W↵�(x) + b↵). (6)

Note that the operator softmax(z)i = exp(zi)PK
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk�(x) + bµk . (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(⌃k) = mELU(W⌃k�(x) + b⌃k) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

(
↵(ez � 1) + 1 for z  0

z + 1 for z > 0
(9)

to enforce positive values. The diagonal parametrization as-
sumes independence between the dimensions of the simulator
parameters ✓. This turns out to be not too restrictive if the
number of components in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

� = (W↵,b↵, {Wµk ,bµk ,W⌃k ,b⌃k}
K
k=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

�(x) = �(W2(�(W1x+ b1)) + b2), (11)

where �(·) is a sigmoid function; we use �(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features
BayesSim can use random Fourier features [25] instead of

neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/

p
s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(⌧ ), where ⌧ = kx � x0

k, by a dot product
k(⌧ ) ⇡ �(x)T�(x) of finite dimensional features �(x).
This is possible by first applying the Bochner’s theorem [33]
stated below:

Theorem 1 (Bochner’s Theorem) A shift invariant kernel k(⌧ ),
⌧ 2 RD, associated with a positive finite measure dµ (!) can
be represented in terms of its Fourier transform as,

k(⌧ ) =

Z

RD

e�i!·⌧dµ (!) . (12)

The proof can be found in [12]. When µ has density K(!)
then K represents the spectral distribution for a positive semi-
definite k. In this case k(⌧ ) and K(!) are Fourier duals:

k(⌧ ) =

Z
K(!)e�i!·⌧d!. (13)

Approximating Equation 13 with a Monte Carlo estimate
with N samples, yields

k(⌧ ) ⇡
1

N

NX

n=1

(e�i!nx)(e�i!nx
0
), (14)

where ! is sampled from the density K(!).
Finally, using Euler’s formula (e�ix = cos(x) � i sin(x))

we recover the features:

�(x) =
1

p
N

[cos (!1x+ b1) , . . . , cos (!nx+ bn) ,

�i · sin (!1x+ b1) , . . . ,�i · sin (!nx+ bn)].
(15)

where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
kernels proving flexibility in introducing prior knowledge by
selecting a suitable kernel for the problem. For example, the
RBF kernel can be approximated using the features above with
! ⇠ N (0, 2��2I) and b ⇠ U [�⇡,⇡]. � is a hyperparameter
that corresponds to the kernel length scale and is usually set
up with cross validation.

More consistent than Neural Networks for this problem

that p̂(✓|x = xr) = q�(✓|x = xr). When p̃(✓) 6= p(✓) we
need to adjust the posterior as detailed in Section IV-E.

B. Mixture density random feature networks

We model the conditional density q�(✓|x) as a mixture of
K Gaussians,

q�(✓|x) =
X

k

↵kN (✓|µk,⌃k), (5)

where ↵ = (↵1, . . . ,↵K) are mixing coefficients, {µk} are
means and {⌃k} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing ↵, µ and ⌃. We
justify and describe these features in the next section.

Denoting  (x) as the feature vector, the mixing coeficients
are calculated as

↵ = softmax(W↵�(x) + b↵). (6)

Note that the operator softmax(z)i = exp(zi)PK
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk�(x) + bµk . (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(⌃k) = mELU(W⌃k�(x) + b⌃k) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

(
↵(ez � 1) + 1 for z  0

z + 1 for z > 0
(9)

to enforce positive values. The diagonal parametrization as-
sumes independence between the dimensions of the simulator
parameters ✓. This turns out to be not too restrictive if the
number of components in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

� = (W↵,b↵, {Wµk ,bµk ,W⌃k ,b⌃k}
K
k=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

�(x) = �(W2(�(W1x+ b1)) + b2), (11)

where �(·) is a sigmoid function; we use �(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features
BayesSim can use random Fourier features [25] instead of

neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/

p
s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(⌧ ), where ⌧ = kx � x0

k, by a dot product
k(⌧ ) ⇡ �(x)T�(x) of finite dimensional features �(x).
This is possible by first applying the Bochner’s theorem [33]
stated below:
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where ! is sampled from the density K(!).
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where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
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selecting a suitable kernel for the problem. For example, the
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! ⇠ N (0, 2��2I) and b ⇠ U [�⇡,⇡]. � is a hyperparameter
that corresponds to the kernel length scale and is usually set
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When the prior is different from the proposal prior, we need to adjust the posterior as 
follows,

Assuming a Gaussian prior, the posterior is given by 

where 

And the coefficients are:

RECOVERING THE FINAL RESULT

We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(✓|x = xr) /
q�(✓|xr)

p̃(✓)
. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.
In this case, since q�(✓|x) is a mixture of Gaussians and
p̃(✓) ⇠ N (✓|µ0,⌃0), the solution is given by

p̂(✓|x = xr) =
X

k

↵0
kN (✓|µ0

k,⌃
0
k) (17)

where,

⌃0
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��1 (18)
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�
(19)

↵0
k =

↵k exp(�
1
2�k)P

k0 ↵k0 exp(� 1
2�k0)

, (20)

and the coefficients �k are given by

�k = log det⌃k � log det⌃0 � log det⌃0
k + µT

k⌃
�1
k µk

� µT
0 ⌃

�1
0 µ0 � µ0T

k ⌃0�1
k µ0

k. (21)

F. Sufficient statistics for state-action trajectories
Trajectories of state and action pairs in typical problems

can be long sequences making the input dimensionality to
the model prohibitive large and computationally expensive.
We adopt a strategy commonly used in ABC; instead of
inputting raw state and action sequences to the model, we
first compute some sufficient statistics. Formally, x =  (S,A)
where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
literature for sufficient statistics for time series or trajectory
data. For example, the mean, log variance and autocorrelation
for each time series as well as cross-correlation between two
time series. Another possibility is to learn these from data, for
example with an autoencoder. Here we adopt a simpler strategy
and use statistics commonly applied to stochastic dynamic
systems such as the Lotka-Volterra model [37].

Defining ⌧ = {st � st�1
}
T
t=1 as the difference between

immediate future states and current states, the statistics

 (S,A) = ({h⌧i,Aji}
Ds,Da
i=1,j=1,E[⌧ ],Var[⌧ ]), (22)

where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, h·, ·i denotes the dot
product, E[·] is the expectation, and Var[·] the variance.

G. Example: CartPole posterior
We provide a simple example to demonstrate the algorithm

in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 1 to train BayesSim. With
the model trained, we collected 10 trajectories with the correct
parameters to simulate the real observations. Figure 2 shows
the posteriors for both problems. As with many problems
involving two related variables, mass and pole length exhibit
statistical dependencies that generate multiple explanations for
their values. For example, the pole might have lower mass and
longer length, or vice versa. BayesSim is able to recover the
multi-modality nature of the posterior providing densities that
represent the uncertainty of the problem accurately.

H. Domain randomization with BayesSim
Here we describe the domain randomization strategy to

take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(✓|x = xr) we maximize the objective,

J(�) = E✓

"
E⌘

"
T�1X

t�0

�(t)r(st,at)|�

##
, (23)

where ✓ ⇠ p̂(✓|x = xr) with respect to the policy param-
eters �. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set

1https://github.com/araffin/rl-baselines-zoo

We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(✓|x = xr) /
q�(✓|xr)

p̃(✓)
. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.
In this case, since q�(✓|x) is a mixture of Gaussians and
p̃(✓) ⇠ N (✓|µ0,⌃0), the solution is given by
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and the coefficients �k are given by
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can be long sequences making the input dimensionality to
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where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
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data. For example, the mean, log variance and autocorrelation
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first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set
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We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,
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When the proposal prior is Gaussian, we can compute the
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example with an autoencoder. Here we adopt a simpler strategy
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where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, h·, ·i denotes the dot
product, E[·] is the expectation, and Var[·] the variance.
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We provide a simple example to demonstrate the algorithm

in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 1 to train BayesSim. With
the model trained, we collected 10 trajectories with the correct
parameters to simulate the real observations. Figure 2 shows
the posteriors for both problems. As with many problems
involving two related variables, mass and pole length exhibit
statistical dependencies that generate multiple explanations for
their values. For example, the pole might have lower mass and
longer length, or vice versa. BayesSim is able to recover the
multi-modality nature of the posterior providing densities that
represent the uncertainty of the problem accurately.

H. Domain randomization with BayesSim
Here we describe the domain randomization strategy to

take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(✓|x = xr) we maximize the objective,
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where ✓ ⇠ p̂(✓|x = xr) with respect to the policy param-
eters �. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set
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We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(✓|x = xr) /
q�(✓|xr)

p̃(✓)
. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.
In this case, since q�(✓|x) is a mixture of Gaussians and
p̃(✓) ⇠ N (✓|µ0,⌃0), the solution is given by

p̂(✓|x = xr) =
X

k
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and the coefficients �k are given by
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F. Sufficient statistics for state-action trajectories
Trajectories of state and action pairs in typical problems

can be long sequences making the input dimensionality to
the model prohibitive large and computationally expensive.
We adopt a strategy commonly used in ABC; instead of
inputting raw state and action sequences to the model, we
first compute some sufficient statistics. Formally, x =  (S,A)
where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
literature for sufficient statistics for time series or trajectory
data. For example, the mean, log variance and autocorrelation
for each time series as well as cross-correlation between two
time series. Another possibility is to learn these from data, for
example with an autoencoder. Here we adopt a simpler strategy
and use statistics commonly applied to stochastic dynamic
systems such as the Lotka-Volterra model [37].

Defining ⌧ = {st � st�1
}
T
t=1 as the difference between

immediate future states and current states, the statistics

 (S,A) = ({h⌧i,Aji}
Ds,Da
i=1,j=1,E[⌧ ],Var[⌧ ]), (22)

where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, h·, ·i denotes the dot
product, E[·] is the expectation, and Var[·] the variance.

G. Example: CartPole posterior
We provide a simple example to demonstrate the algorithm

in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 1 to train BayesSim. With
the model trained, we collected 10 trajectories with the correct
parameters to simulate the real observations. Figure 2 shows
the posteriors for both problems. As with many problems
involving two related variables, mass and pole length exhibit
statistical dependencies that generate multiple explanations for
their values. For example, the pole might have lower mass and
longer length, or vice versa. BayesSim is able to recover the
multi-modality nature of the posterior providing densities that
represent the uncertainty of the problem accurately.

H. Domain randomization with BayesSim
Here we describe the domain randomization strategy to

take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(✓|x = xr) we maximize the objective,

J(�) = E✓

"
E⌘

"
T�1X

t�0

�(t)r(st,at)|�

##
, (23)

where ✓ ⇠ p̂(✓|x = xr) with respect to the policy param-
eters �. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set
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Since trajectories of state and action pairs might be very high dimensional, we reduce the 
dimensionality using some sufficient statistics. Formally, observations

where                        are states and                         are actions.

We use sufficient statistics that are inspired by other problems in likelihood-free inference 
such as cross correlation between states and actions, means, and variances,  

SUFFICIENT STATISTICS

We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(✓|x = xr) /
q�(✓|xr)

p̃(✓)
. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.
In this case, since q�(✓|x) is a mixture of Gaussians and
p̃(✓) ⇠ N (✓|µ0,⌃0), the solution is given by

p̂(✓|x = xr) =
X
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and the coefficients �k are given by

�k = log det⌃k � log det⌃0 � log det⌃0
k + µT

k⌃
�1
k µk

� µT
0 ⌃

�1
0 µ0 � µ0T

k ⌃0�1
k µ0

k. (21)

F. Sufficient statistics for state-action trajectories
Trajectories of state and action pairs in typical problems

can be long sequences making the input dimensionality to
the model prohibitive large and computationally expensive.
We adopt a strategy commonly used in ABC; instead of
inputting raw state and action sequences to the model, we
first compute some sufficient statistics. Formally, x =  (S,A)
where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
literature for sufficient statistics for time series or trajectory
data. For example, the mean, log variance and autocorrelation
for each time series as well as cross-correlation between two
time series. Another possibility is to learn these from data, for
example with an autoencoder. Here we adopt a simpler strategy
and use statistics commonly applied to stochastic dynamic
systems such as the Lotka-Volterra model [37].

Defining ⌧ = {st � st�1
}
T
t=1 as the difference between

immediate future states and current states, the statistics

 (S,A) = ({h⌧i,Aji}
Ds,Da
i=1,j=1,E[⌧ ],Var[⌧ ]), (22)

where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, h·, ·i denotes the dot
product, E[·] is the expectation, and Var[·] the variance.

G. Example: CartPole posterior
We provide a simple example to demonstrate the algorithm

in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 1 to train BayesSim. With
the model trained, we collected 10 trajectories with the correct
parameters to simulate the real observations. Figure 2 shows
the posteriors for both problems. As with many problems
involving two related variables, mass and pole length exhibit
statistical dependencies that generate multiple explanations for
their values. For example, the pole might have lower mass and
longer length, or vice versa. BayesSim is able to recover the
multi-modality nature of the posterior providing densities that
represent the uncertainty of the problem accurately.

H. Domain randomization with BayesSim
Here we describe the domain randomization strategy to

take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(✓|x = xr) we maximize the objective,

J(�) = E✓

"
E⌘

"
T�1X

t�0

�(t)r(st,at)|�

##
, (23)

where ✓ ⇠ p̂(✓|x = xr) with respect to the policy param-
eters �. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set
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We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(✓|x = xr) /
q�(✓|xr)

p̃(✓)
. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.
In this case, since q�(✓|x) is a mixture of Gaussians and
p̃(✓) ⇠ N (✓|µ0,⌃0), the solution is given by

p̂(✓|x = xr) =
X
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and the coefficients �k are given by

�k = log det⌃k � log det⌃0 � log det⌃0
k + µT
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F. Sufficient statistics for state-action trajectories
Trajectories of state and action pairs in typical problems

can be long sequences making the input dimensionality to
the model prohibitive large and computationally expensive.
We adopt a strategy commonly used in ABC; instead of
inputting raw state and action sequences to the model, we
first compute some sufficient statistics. Formally, x =  (S,A)
where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
literature for sufficient statistics for time series or trajectory
data. For example, the mean, log variance and autocorrelation
for each time series as well as cross-correlation between two
time series. Another possibility is to learn these from data, for
example with an autoencoder. Here we adopt a simpler strategy
and use statistics commonly applied to stochastic dynamic
systems such as the Lotka-Volterra model [37].

Defining ⌧ = {st � st�1
}
T
t=1 as the difference between

immediate future states and current states, the statistics

 (S,A) = ({h⌧i,Aji}
Ds,Da
i=1,j=1,E[⌧ ],Var[⌧ ]), (22)

where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, h·, ·i denotes the dot
product, E[·] is the expectation, and Var[·] the variance.

G. Example: CartPole posterior
We provide a simple example to demonstrate the algorithm

in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 1 to train BayesSim. With
the model trained, we collected 10 trajectories with the correct
parameters to simulate the real observations. Figure 2 shows
the posteriors for both problems. As with many problems
involving two related variables, mass and pole length exhibit
statistical dependencies that generate multiple explanations for
their values. For example, the pole might have lower mass and
longer length, or vice versa. BayesSim is able to recover the
multi-modality nature of the posterior providing densities that
represent the uncertainty of the problem accurately.

H. Domain randomization with BayesSim
Here we describe the domain randomization strategy to

take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(✓|x = xr) we maximize the objective,

J(�) = E✓

"
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"
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�(t)r(st,at)|�
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where ✓ ⇠ p̂(✓|x = xr) with respect to the policy param-
eters �. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set
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We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(✓|x = xr) /
q�(✓|xr)

p̃(✓)
. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.
In this case, since q�(✓|x) is a mixture of Gaussians and
p̃(✓) ⇠ N (✓|µ0,⌃0), the solution is given by

p̂(✓|x = xr) =
X
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and the coefficients �k are given by

�k = log det⌃k � log det⌃0 � log det⌃0
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F. Sufficient statistics for state-action trajectories
Trajectories of state and action pairs in typical problems

can be long sequences making the input dimensionality to
the model prohibitive large and computationally expensive.
We adopt a strategy commonly used in ABC; instead of
inputting raw state and action sequences to the model, we
first compute some sufficient statistics. Formally, x =  (S,A)
where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
literature for sufficient statistics for time series or trajectory
data. For example, the mean, log variance and autocorrelation
for each time series as well as cross-correlation between two
time series. Another possibility is to learn these from data, for
example with an autoencoder. Here we adopt a simpler strategy
and use statistics commonly applied to stochastic dynamic
systems such as the Lotka-Volterra model [37].

Defining ⌧ = {st � st�1
}
T
t=1 as the difference between

immediate future states and current states, the statistics

 (S,A) = ({h⌧i,Aji}
Ds,Da
i=1,j=1,E[⌧ ],Var[⌧ ]), (22)

where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, h·, ·i denotes the dot
product, E[·] is the expectation, and Var[·] the variance.

G. Example: CartPole posterior
We provide a simple example to demonstrate the algorithm

in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 1 to train BayesSim. With
the model trained, we collected 10 trajectories with the correct
parameters to simulate the real observations. Figure 2 shows
the posteriors for both problems. As with many problems
involving two related variables, mass and pole length exhibit
statistical dependencies that generate multiple explanations for
their values. For example, the pole might have lower mass and
longer length, or vice versa. BayesSim is able to recover the
multi-modality nature of the posterior providing densities that
represent the uncertainty of the problem accurately.

H. Domain randomization with BayesSim
Here we describe the domain randomization strategy to

take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(✓|x = xr) we maximize the objective,

J(�) = E✓
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"
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where ✓ ⇠ p̂(✓|x = xr) with respect to the policy param-
eters �. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set

1https://github.com/araffin/rl-baselines-zoo

We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(✓|x = xr) /
q�(✓|xr)

p̃(✓)
. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.
In this case, since q�(✓|x) is a mixture of Gaussians and
p̃(✓) ⇠ N (✓|µ0,⌃0), the solution is given by

p̂(✓|x = xr) =
X
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and the coefficients �k are given by
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F. Sufficient statistics for state-action trajectories
Trajectories of state and action pairs in typical problems

can be long sequences making the input dimensionality to
the model prohibitive large and computationally expensive.
We adopt a strategy commonly used in ABC; instead of
inputting raw state and action sequences to the model, we
first compute some sufficient statistics. Formally, x =  (S,A)
where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
literature for sufficient statistics for time series or trajectory
data. For example, the mean, log variance and autocorrelation
for each time series as well as cross-correlation between two
time series. Another possibility is to learn these from data, for
example with an autoencoder. Here we adopt a simpler strategy
and use statistics commonly applied to stochastic dynamic
systems such as the Lotka-Volterra model [37].

Defining ⌧ = {st � st�1
}
T
t=1 as the difference between

immediate future states and current states, the statistics

 (S,A) = ({h⌧i,Aji}
Ds,Da
i=1,j=1,E[⌧ ],Var[⌧ ]), (22)

where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, h·, ·i denotes the dot
product, E[·] is the expectation, and Var[·] the variance.

G. Example: CartPole posterior
We provide a simple example to demonstrate the algorithm

in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 1 to train BayesSim. With
the model trained, we collected 10 trajectories with the correct
parameters to simulate the real observations. Figure 2 shows
the posteriors for both problems. As with many problems
involving two related variables, mass and pole length exhibit
statistical dependencies that generate multiple explanations for
their values. For example, the pole might have lower mass and
longer length, or vice versa. BayesSim is able to recover the
multi-modality nature of the posterior providing densities that
represent the uncertainty of the problem accurately.

H. Domain randomization with BayesSim
Here we describe the domain randomization strategy to

take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(✓|x = xr) we maximize the objective,

J(�) = E✓

"
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"
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where ✓ ⇠ p̂(✓|x = xr) with respect to the policy param-
eters �. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set

1https://github.com/araffin/rl-baselines-zoo

A fast low dimensional representation for trajectories
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DOMAIN RANDOMIZATION WITH BAYES-SIM

RL can be trained in simulation and applied to the real robot

In reinforcement learning, we want to learn a policy 𝜋(𝒔; 𝛽), parametrized by 𝛽, that 
optimizes the objective,

where 𝑟(𝒔<, 𝒂<) is the reward of taking action 𝒂< in state 𝒔<.

We can use the posterior produced by BayesSim to estimate the expectation 𝐸@.

We can train the policy using multiple simulators, each sampled from the posterior.

The policy obtained is more robust and likely to work on the real robot.

We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery
From Equation 4 we note that when the proposal prior

is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(✓)/p̃(✓).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(✓|x = xr) /
q�(✓|xr)

p̃(✓)
. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.
In this case, since q�(✓|x) is a mixture of Gaussians and
p̃(✓) ⇠ N (✓|µ0,⌃0), the solution is given by

p̂(✓|x = xr) =
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and the coefficients �k are given by
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F. Sufficient statistics for state-action trajectories
Trajectories of state and action pairs in typical problems

can be long sequences making the input dimensionality to
the model prohibitive large and computationally expensive.
We adopt a strategy commonly used in ABC; instead of
inputting raw state and action sequences to the model, we
first compute some sufficient statistics. Formally, x =  (S,A)
where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
literature for sufficient statistics for time series or trajectory
data. For example, the mean, log variance and autocorrelation
for each time series as well as cross-correlation between two
time series. Another possibility is to learn these from data, for
example with an autoencoder. Here we adopt a simpler strategy
and use statistics commonly applied to stochastic dynamic
systems such as the Lotka-Volterra model [37].

Defining ⌧ = {st � st�1
}
T
t=1 as the difference between

immediate future states and current states, the statistics

 (S,A) = ({h⌧i,Aji}
Ds,Da
i=1,j=1,E[⌧ ],Var[⌧ ]), (22)

where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, h·, ·i denotes the dot
product, E[·] is the expectation, and Var[·] the variance.

G. Example: CartPole posterior
We provide a simple example to demonstrate the algorithm

in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 1 to train BayesSim. With
the model trained, we collected 10 trajectories with the correct
parameters to simulate the real observations. Figure 2 shows
the posteriors for both problems. As with many problems
involving two related variables, mass and pole length exhibit
statistical dependencies that generate multiple explanations for
their values. For example, the pole might have lower mass and
longer length, or vice versa. BayesSim is able to recover the
multi-modality nature of the posterior providing densities that
represent the uncertainty of the problem accurately.

H. Domain randomization with BayesSim
Here we describe the domain randomization strategy to

take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(✓|x = xr) we maximize the objective,

J(�) = E✓

"
E⌘

"
T�1X

t�0

�(t)r(st,at)|�

##
, (23)

where ✓ ⇠ p̂(✓|x = xr) with respect to the policy param-
eters �. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over ↵ to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (✓|µk,⌃k).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery
The first analysis we carry out is the quality of the posteriors

obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(✓⇤|x = xr), where ✓⇤ is
the actual value for the parameter. We compare Rejection-
ABC [24] as the baseline, the recent ✏-Free [22] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [26] and set

1https://github.com/araffin/rl-baselines-zoo
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CART POLE EXAMPLE

Fig. 2: Example of posterior marginals obtained for the CartPole problem. Left: Posterior for parameter length. Right: Posterior
for parameters masspole. Note that the posterior marginals capture the multimodality of the problem where two explanations
seem likely, a longer pole length with a lighter mass or vice versa.

up the the sampling precision � by cross validation. Three
different simulators were used for different problems; OpenAI
Gym [9], PyBullet 2, and MuJoCo [36]. Finally, the following
problems were considered; CartPole (Gym), Pendulum (Gym),
Mountain Car (Gym), Acrobot (Gym), Hopper (PyBullet),
Fetch Push (MuJoCo) and Fetch Slide (MuJoCo). For all
configurations of methods and parameters, training and testing
were performed 5 times with the log probabilities averaged and
standard deviation computed. To extract the real observations,
we simulate the environments with the actual parameters 10
times and average the sufficient statistics to obtain xr. In all
cases we collect sufficient statistics by performing rollouts for
either a maximum of 200 time steps or until the end of the
episode.

Table I shows the results (means and standard deviations)
for the log probabilities. BayesSim with either RFF or Neural
Network features provides generally higher log-probabilities
and lower standard deviation than Rejection ABC. This in-
dicates that the posteriors provided by BayesSim are more
peaked and centered around the correct values for the param-
eters. Compared to ✏-Free, the results are equivalent in terms
of the means but BayesSim generally provides lower standard
deviation across multiple runs of the method, indicating it is
more stable than ✏-Free. Comparing BayesSim with RFF and
NN, the RFF features lead to higher log probabilities in most
cases but BayesSim with neural networks have lower standard
deviation.

These results suggest that BayeSim with either RFF or
NN is comparable to the state-of-art, and in many cases
superior when estimating the posterior distribution over the
simulation parameters. For the robotics problems analyzed
in the next section, however, BayesSim with RFF provide
significant superior results than the other methods and slightly
better than BayesSim with NN. This can be better observed
when we plot the posteriors in Figure 3. BayesSim RFF is

2https://pypi.org/project/pybullet/

Fig. 3: Posteriors recovered by different methods for the
Fetch slide problem. Note that BayesSim with random features
provides a posterior that is more peaked around the true value.

significantly more peaked and centered around the true friction
value.

B. Robustness of policies
We evaluate robustness of policies by comparing their

performance on the uniform prior and the learned posterior
provided by BayesSim. Evaluation is done over a pre-defined
range of simulator settings and the average reward is shown
for each parameter value.

In the first set of experiments we use the CartPole problem
as a simple example to illustrate the benefits of posterior
randomization. We trained two policies, the first randomizing
with a uniform prior for length and masspole as indicated
in Table I. The second, randomized based on the posterior
provided by BayesSim with RFF. In both cases we use PPO
to train the policies with 100 samples from the prior and
posterior, for 2M timesteps. The results are presented in
Figure 4, averaged over several runs with the corresponding



28

CART POLE EXAMPLE

Fig. 2: Example of joint posteriors obtained for the CartPole problem with different parametrizations for length and
masspole. The true value is indicated by a star. Note that the joint posteriors capture the multimodality of the problem
when two or more explanations seem likely, for example, a longer pole length with a lighter masspole or vice versa.

we simulate the environments with the actual parameters 10
times and average the sufficient statistics to obtain xr. In all
cases we collect sufficient statistics by performing rollouts for
either a maximum of 200 time steps or until the end of the
episode.

Table I shows the results (means and standard deviations)
for the log probabilities. BayesSim with either RFF or Neural
Network features provides generally higher log-probabilities
and lower standard deviation than Rejection ABC. This in-
dicates that the posteriors provided by BayesSim are more
peaked and centered around the correct values for the param-
eters. Compared to ✏-Free, the results are equivalent in terms
of the means but BayesSim generally provides lower standard
deviation across multiple runs of the method, indicating it is
more stable than ✏-Free. Comparing BayesSim with RFF and
NN, the RFF features lead to higher log probabilities in most
cases but BayesSim with neural networks have lower standard
deviation.

These results suggest that BayesSim with either RFF or
NN is comparable to the state-of-art, and in many cases
superior when estimating the posterior distribution over the
simulation parameters. For the robotics problems analyzed
in the next section, however, BayesSim with RFF provide
significant superior results than the other methods and slightly
better than BayesSim with NN. This can be better observed
when we plot the posteriors in Figure 3. BayesSim RFF is
significantly more peaked and centered around the true friction
value.

B. Robustness of policies
We evaluate robustness of policies by comparing their

performance on the uniform prior and the learned posterior
provided by BayesSim. Evaluation is done over a pre-defined
range of simulator settings and the average reward is shown
for each parameter value.

In the first set of experiments we use the CartPole problem
as a simple example to illustrate the benefits of posterior

Fig. 3: Posteriors recovered by different methods for the
Fetch slide problem. Note that BayesSim with random features
provides a posterior that is more peaked around the true value.

randomization. We trained two policies, the first randomizing
with a uniform prior for length and masspole as indicated
in Table I. The second, randomized based on the posterior
provided by BayesSim with RFF. In both cases we use PPO
to train the policies with 100 samples from the prior and
posterior, for 2M timesteps. The results are presented in
Figure 4, averaged over several runs with the corresponding
standard deviations. It can be observed that randomization
over the posterior yields a significantly more robust policy,
in particular at the actual parameter value. Also noticeable
is the reduction in performance for lower length values and
higher masspole values. This is expected as it is more difficult
to control the pole position when the length is short due to the
increased dynamics of the system. Similarly, when the mass
increases too much, beyond the value it was actually trained
on, the controller struggles to maintain the pole balanced.
Importantly, the policy learned with the posterior seems much
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PUSH AND SLIDE
All simulators are wrong, some are useful,

but many, together, can be much more useful



30

FETCH SLIDE
coefficient of the object and the surface plays a major role
in the final result as they are strictly related to how far the
object goes after each force is applied. A very low friction
coefficient means that the object is harder to control as it slides
more easily and a very high one means that more force needs
to be applied in order to make the object to move.

Our goal is to recover a good approximation of the posterior
over friction coefficients using BayesSim. Initially, we need
to learn a policy with a fixed friction coefficient that will be
used for data generation purposes. We train this policy using
DDPG with experiences being sampled using HER for 200
epochs with 100 episodes/rollouts per epoch. Gradient updates
are done using Adam with step size of 0.001. We then run
this policy multiple times with different friction coefficients in
order to approximate the likelihood function and recover the
full posterior over simulation parameters. With the dynamics
model in hand, we can finally recover the desired posterior
using some data sampled from the environment we want to
learn the dynamics from. Training is carried out using the
same aforementioned settings but instead of using a fixed
friction coefficient, we sample a new one from its respective
distribution every time a new episode starts.

The results from both tasks are presented on Figure 5. As it
has been shown in previously work [23], the uniform prior
works remarkably well on the push task. This happens as
the robot has the opportunity to correct its trajectory whether
something goes wrong. As it has been exposed to a wide range
of scenarios involving different dynamics, it can then use the
input of the environment to perform corrective actions and
still be able to achieve its goal. However, the slide task tells
a different story since using a wide uniform prior has led the
robot to achieve a very poor performance. This happens as
not only the actions for different coefficients in most times
are completely different but also because the robot has no
option of correcting its trajectory. This is where methods like
BayesSim are useful as it recovers a distribution with very
high density around the true parameter and, hence, leads to
a better overall control policy. Our results shows that higher
rewards are achieved around the true friction value while the
uniform prior results are mostly flat throughout all values.

VI. CONCLUSIONS

This paper represents the first step towards a Bayesian
treatment of robotics simulation parameters, combined with
domain randomization for policy search. Our approach is
connected to system identification in that both attempt to
estimate dynamic models, but ours uses a black-box generative
model, or simulator, totally integrated into the framework.
Prior distributions can also be provided and incorporated into
the model to compute a full, potentially multi-modal posterior
over the parameters. The method proposed here, BayesSim,
performs comparably to other state-of-the-art likelihood-free
approaches for Bayesian inference but appears more stable
to different initializations, and across multiple runs when
recovering the true posterior. Finally, we show that domain
randomization with the posterior leads to more robust policies

Fig. 5: Comparison between policies trained on randomizing
the prior vs BayesSim posterior for different values of the
simulation parameter. Top: Fetch slide problem. Bottom: Fetch
push problem.

over multiple parameter values compared to policies trained
on uniform prior randomization.

The two applications described in the paper for likelihood-
free inference are two instances of a large range of problems
where simulators can make use of a full set of parametrizations
to best represent reality. In this manner, our framework can be
integrated in many other problems involving simulators. An
interesting line of research for future work is to use BayesSim
to help simulators synthesize images by randomizing over
background properties. This can potentially help in making
many computer vision problems more robust to environment
variability in tasks such as object recognition, 3D pose esti-
mation, or motion tracking to name a few.
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Fig. 2: Example of posterior marginals obtained for the CartPole problem. Left: Posterior for parameter length. Right: Posterior
for parameters masspole. Note that the posterior marginals capture the multimodality of the problem where two explanations
seem likely, a longer pole length with a lighter mass or vice versa.

up the the sampling precision � by cross validation. Three
different simulators were used for different problems; OpenAI
Gym [9], PyBullet 2, and MuJoCo [36]. Finally, the following
problems were considered; CartPole (Gym), Pendulum (Gym),
Mountain Car (Gym), Acrobot (Gym), Hopper (PyBullet),
Fetch Push (MuJoCo) and Fetch Slide (MuJoCo). For all
configurations of methods and parameters, training and testing
were performed 5 times with the log probabilities averaged and
standard deviation computed. To extract the real observations,
we simulate the environments with the actual parameters 10
times and average the sufficient statistics to obtain xr. In all
cases we collect sufficient statistics by performing rollouts for
either a maximum of 200 time steps or until the end of the
episode.

Table I shows the results (means and standard deviations)
for the log probabilities. BayesSim with either RFF or Neural
Network features provides generally higher log-probabilities
and lower standard deviation than Rejection ABC. This in-
dicates that the posteriors provided by BayesSim are more
peaked and centered around the correct values for the param-
eters. Compared to ✏-Free, the results are equivalent in terms
of the means but BayesSim generally provides lower standard
deviation across multiple runs of the method, indicating it is
more stable than ✏-Free. Comparing BayesSim with RFF and
NN, the RFF features lead to higher log probabilities in most
cases but BayesSim with neural networks have lower standard
deviation.

These results suggest that BayeSim with either RFF or
NN is comparable to the state-of-art, and in many cases
superior when estimating the posterior distribution over the
simulation parameters. For the robotics problems analyzed
in the next section, however, BayesSim with RFF provide
significant superior results than the other methods and slightly
better than BayesSim with NN. This can be better observed
when we plot the posteriors in Figure 3. BayesSim RFF is

2https://pypi.org/project/pybullet/

Fig. 3: Posteriors recovered by different methods for the
Fetch slide problem. Note that BayesSim with random features
provides a posterior that is more peaked around the true value.

significantly more peaked and centered around the true friction
value.

B. Robustness of policies
We evaluate robustness of policies by comparing their

performance on the uniform prior and the learned posterior
provided by BayesSim. Evaluation is done over a pre-defined
range of simulator settings and the average reward is shown
for each parameter value.

In the first set of experiments we use the CartPole problem
as a simple example to illustrate the benefits of posterior
randomization. We trained two policies, the first randomizing
with a uniform prior for length and masspole as indicated
in Table I. The second, randomized based on the posterior
provided by BayesSim with RFF. In both cases we use PPO
to train the policies with 100 samples from the prior and
posterior, for 2M timesteps. The results are presented in
Figure 4, averaged over several runs with the corresponding
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coefficient of the object and the surface plays a major role
in the final result as they are strictly related to how far the
object goes after each force is applied. A very low friction
coefficient means that the object is harder to control as it slides
more easily and a very high one means that more force needs
to be applied in order to make the object to move.

Our goal is to recover a good approximation of the posterior
over friction coefficients using BayesSim. Initially, we need
to learn a policy with a fixed friction coefficient that will be
used for data generation purposes. We train this policy using
DDPG with experiences being sampled using HER for 200
epochs with 100 episodes/rollouts per epoch. Gradient updates
are done using Adam with step size of 0.001. We then run
this policy multiple times with different friction coefficients in
order to approximate the likelihood function and recover the
full posterior over simulation parameters. With the dynamics
model in hand, we can finally recover the desired posterior
using some data sampled from the environment we want to
learn the dynamics from. Training is carried out using the
same aforementioned settings but instead of using a fixed
friction coefficient, we sample a new one from its respective
distribution every time a new episode starts.

The results from both tasks are presented on Figure 5. As it
has been shown in previously work [23], the uniform prior
works remarkably well on the push task. This happens as
the robot has the opportunity to correct its trajectory whether
something goes wrong. As it has been exposed to a wide range
of scenarios involving different dynamics, it can then use the
input of the environment to perform corrective actions and
still be able to achieve its goal. However, the slide task tells
a different story since using a wide uniform prior has led the
robot to achieve a very poor performance. This happens as
not only the actions for different coefficients in most times
are completely different but also because the robot has no
option of correcting its trajectory. This is where methods like
BayesSim are useful as it recovers a distribution with very
high density around the true parameter and, hence, leads to
a better overall control policy. Our results shows that higher
rewards are achieved around the true friction value while the
uniform prior results are mostly flat throughout all values.

VI. CONCLUSIONS

This paper represents the first step towards a Bayesian
treatment of robotics simulation parameters, combined with
domain randomization for policy search. Our approach is
connected to system identification in that both attempt to
estimate dynamic models, but ours uses a black-box generative
model, or simulator, totally integrated into the framework.
Prior distributions can also be provided and incorporated into
the model to compute a full, potentially multi-modal posterior
over the parameters. The method proposed here, BayesSim,
performs comparably to other state-of-the-art likelihood-free
approaches for Bayesian inference but appears more stable
to different initializations, and across multiple runs when
recovering the true posterior. Finally, we show that domain
randomization with the posterior leads to more robust policies

Fig. 5: Comparison between policies trained on randomizing
the prior vs BayesSim posterior for different values of the
simulation parameter. Top: Fetch slide problem. Bottom: Fetch
push problem.

over multiple parameter values compared to policies trained
on uniform prior randomization.

The two applications described in the paper for likelihood-
free inference are two instances of a large range of problems
where simulators can make use of a full set of parametrizations
to best represent reality. In this manner, our framework can be
integrated in many other problems involving simulators. An
interesting line of research for future work is to use BayesSim
to help simulators synthesize images by randomizing over
background properties. This can potentially help in making
many computer vision problems more robust to environment
variability in tasks such as object recognition, 3D pose esti-
mation, or motion tracking to name a few.
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Fig. 2: Example of posterior marginals obtained for the CartPole problem. Left: Posterior for parameter length. Right: Posterior
for parameters masspole. Note that the posterior marginals capture the multimodality of the problem where two explanations
seem likely, a longer pole length with a lighter mass or vice versa.

up the the sampling precision � by cross validation. Three
different simulators were used for different problems; OpenAI
Gym [9], PyBullet 2, and MuJoCo [36]. Finally, the following
problems were considered; CartPole (Gym), Pendulum (Gym),
Mountain Car (Gym), Acrobot (Gym), Hopper (PyBullet),
Fetch Push (MuJoCo) and Fetch Slide (MuJoCo). For all
configurations of methods and parameters, training and testing
were performed 5 times with the log probabilities averaged and
standard deviation computed. To extract the real observations,
we simulate the environments with the actual parameters 10
times and average the sufficient statistics to obtain xr. In all
cases we collect sufficient statistics by performing rollouts for
either a maximum of 200 time steps or until the end of the
episode.

Table I shows the results (means and standard deviations)
for the log probabilities. BayesSim with either RFF or Neural
Network features provides generally higher log-probabilities
and lower standard deviation than Rejection ABC. This in-
dicates that the posteriors provided by BayesSim are more
peaked and centered around the correct values for the param-
eters. Compared to ✏-Free, the results are equivalent in terms
of the means but BayesSim generally provides lower standard
deviation across multiple runs of the method, indicating it is
more stable than ✏-Free. Comparing BayesSim with RFF and
NN, the RFF features lead to higher log probabilities in most
cases but BayesSim with neural networks have lower standard
deviation.

These results suggest that BayeSim with either RFF or
NN is comparable to the state-of-art, and in many cases
superior when estimating the posterior distribution over the
simulation parameters. For the robotics problems analyzed
in the next section, however, BayesSim with RFF provide
significant superior results than the other methods and slightly
better than BayesSim with NN. This can be better observed
when we plot the posteriors in Figure 3. BayesSim RFF is
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Fig. 3: Posteriors recovered by different methods for the
Fetch slide problem. Note that BayesSim with random features
provides a posterior that is more peaked around the true value.

significantly more peaked and centered around the true friction
value.

B. Robustness of policies
We evaluate robustness of policies by comparing their

performance on the uniform prior and the learned posterior
provided by BayesSim. Evaluation is done over a pre-defined
range of simulator settings and the average reward is shown
for each parameter value.

In the first set of experiments we use the CartPole problem
as a simple example to illustrate the benefits of posterior
randomization. We trained two policies, the first randomizing
with a uniform prior for length and masspole as indicated
in Table I. The second, randomized based on the posterior
provided by BayesSim with RFF. In both cases we use PPO
to train the policies with 100 samples from the prior and
posterior, for 2M timesteps. The results are presented in
Figure 4, averaged over several runs with the corresponding
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RESULTS

Problem Parameter Uniform prior Rejection ABC ✏-Free BayesSim RFF BayesSim NN
CartPole pole length [0.1, 2.0] -0.342±0.15 -0.211±0.07 -0.609±0.39 -0.657±0.25

pole mass [0.1, 2.0] 0.032±0.21 0.056±0.14 0.973 ± 0.26 0.633± 0.52
Pendulum dt [0.01, 0.3] 2.101±1.04 2.307±0.84 3.192±0.30 3.199±0.17

Mountain Car power [0.0005, 0.1] 3.69±1.21 3.800±1.06 3.863±0.52 3.901±0.2

Acrobot link mass 1 [0.5, 2.0] 1.704±0.82 1.883±0.79 2.046±0.37 1.331±0.22
link mass 2 [0.5, 2.0] 1.832±0.93 2.237±0.76 0.321±1.85 1.513±0.39
link length 1 [0.1, 1.5] 2.421±0.75 2.135±0.50 2.072±0.76 1.856±0.18
link length 2 [0.5, 1.5] -0.521±0.36 -0.703±0.16 -0.148±0.19 -0.672±0.09

Hopper lateral friction [0.3, 0.5] 3.032±0.43 3.154±0.81 2.622±0.64 3.391±0.08

Fetch Push friction [0.1, 1.0] 1.332±0.54 2.013±0.09 2.423±0.07 2.404±0.05
Fetch Slide friction [0.1, 1.0] 1.014±0.38 1.614±0.12 2.391±0.06 2.111±0.03

TABLE I: Mean and standard deviation of log predicted probabilities for several likelihood-free methods, applied to seven
different problems and parameters.

Fig. 4: Accumulated rewards for CartPole policies trained with PPO across parameter values. Top left: Policy trained by
randomizing with the prior for parameter length. Top right: Policy trained by randomizing with the prior for parameter masspole.
Bottom left: Policy trained by randomizing with the posterior for parameter length. Bottom right: Policy trained by randomizing
with the posterior for parameter masspole.

standard deviations. It can be observed that randomization
over the posterior yields a significantly more robust policy,
in particular at the actual parameter value. Also noticeable
is the reduction in performance for lower length values and
higher masspole values. This is expected as it is more difficult
to control the pole position when the length is short due to the
increased dynamics of the system. Similarly, when the mass
increases too much, beyond the value it was actually trained
on, the controller struggles to maintain the pole balanced.
Importantly, the policy learned with the posterior seems much

more stable across multiple runs as indicated by the lower
variance in the plots.

In the second set of experiments we use a Fetch robot
available in OpenAI Gym [8] to perform both push and slide
tasks. The first is a closed loop scenario, where the arm
is always in range of the entire table and, hence, it can
correct its trajectories according to the input it receives from
the environment. The second is a more difficult open loop
scenario, where the robot has usually only one shot at pushing
the puck to its desired target. For both tasks, the friction
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RESULTS
Comparison to other likelihood-free methods

Problem Parameter Uniform prior Rejection ABC ✏-Free BayesSim RFF BayesSim NN
CartPole pole length [0.1, 2.0] -0.342±0.15 -0.211±0.07 -0.609±0.39 -0.657±0.25

pole mass [0.1, 2.0] 0.032±0.21 0.056±0.14 0.973 ± 0.26 0.633± 0.52
Pendulum dt [0.01, 0.3] 2.101±1.04 2.307±0.84 3.192±0.30 3.199±0.17

Mountain Car power [0.0005, 0.1] 3.69±1.21 3.800±1.06 3.863±0.52 3.901±0.2

Acrobot link mass 1 [0.5, 2.0] 1.704±0.82 1.883±0.79 2.046±0.37 1.331±0.22
link mass 2 [0.5, 2.0] 1.832±0.93 2.237±0.76 0.321±1.85 1.513±0.39
link length 1 [0.1, 1.5] 2.421±0.75 2.135±0.50 2.072±0.76 1.856±0.18
link length 2 [0.5, 1.5] -0.521±0.36 -0.703±0.16 -0.148±0.19 -0.672±0.09

Hopper lateral friction [0.3, 0.5] 3.032±0.43 3.154±0.81 2.622±0.64 3.391±0.08

Fetch Push friction [0.1, 1.0] 1.332±0.54 2.013±0.09 2.423±0.07 2.404±0.05
Fetch Slide friction [0.1, 1.0] 1.014±0.38 1.614±0.12 2.391±0.06 2.111±0.03

TABLE I: Mean and standard deviation of log predicted probabilities for several likelihood-free methods, applied to seven
different problems and parameters.

Fig. 4: Accumulated rewards for CartPole policies trained with PPO across parameter values. Top left: Policy trained by
randomizing with the prior for parameter length. Top right: Policy trained by randomizing with the prior for parameter masspole.
Bottom left: Policy trained by randomizing with the posterior for parameter length. Bottom right: Policy trained by randomizing
with the posterior for parameter masspole.

standard deviations. It can be observed that randomization
over the posterior yields a significantly more robust policy,
in particular at the actual parameter value. Also noticeable
is the reduction in performance for lower length values and
higher masspole values. This is expected as it is more difficult
to control the pole position when the length is short due to the
increased dynamics of the system. Similarly, when the mass
increases too much, beyond the value it was actually trained
on, the controller struggles to maintain the pole balanced.
Importantly, the policy learned with the posterior seems much

more stable across multiple runs as indicated by the lower
variance in the plots.

In the second set of experiments we use a Fetch robot
available in OpenAI Gym [8] to perform both push and slide
tasks. The first is a closed loop scenario, where the arm
is always in range of the entire table and, hence, it can
correct its trajectories according to the input it receives from
the environment. The second is a more difficult open loop
scenario, where the robot has usually only one shot at pushing
the puck to its desired target. For both tasks, the friction
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INFERRING GRANULAR PARAMETERS
[Matl et al. Inferring the Material Properties of 
Granular Media for Robotic Tasks. Submitted to ICRA’20]
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INFERRING MATERIAL PROPERTIES OF GRANULAR MEDIA
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12cm 2cm 4cm 6cm 8cm 10cm

||T(Xs,i)-T(Xs,o)||
2

Real Depth
Image of
Couscous

Simulated Depth
Image Prediction

from Forward Simulation
of Inferred Parameters

Height at which
Parameters Inferred

New Funnel Heights for Testing 
Generalization of Inferred Parameters

||T(Xs,i)-T(Xs,o)||
2

Real Depth
Image of
Barley

Simulated Depth
Image Prediction

from Forward Simulation
of Inferred Parameters

2.0116 2.3628 1.7668 2.0789 3.2065 2.8034

2.4934 3.5235 2.8018 2.0846 2.2746 2.4288

Fig. 5: Comparisons of real depth images of piles poured at different heights
and simulated depth images generated from running a forward simulation
at the corresponding heights with parameters inferred from height=12cm.
L2-errors listed below depth images.

0.3807 between the real and simulated couscous and barley
piles. However, it is critical to test how well these parameters
generalize to pours at different heights. Five more pours of
each grain were performed, with each pour at a different
height: 2,4,6,8,10cm off of the ground. For each of these
pours, a forward simulation was run with the same grain
parameters while shifting the funnel height. Figure 5 illustrates
that the inferred parameters generalize reasonably well, with
relatively low L2-errors. This suggests that it may be possible
under this framework to reason about pour heights to create
desired pile and ring shapes given a specific type of grain.
We test this hypothesis in the following experiment.

C. Robotic Demonstrations

The first demonstration evaluated whether the presented
framework could enable an industrial robot to pour granular
material into a desired shape, as may be necessary in a kitchen
or factory. A new BayesSim model was trained on 1000
simulated piles. The simulator parameters µs, µr, and e were
set to their inferred values for couscous (0.6687, 8.1506E-7,
and 0.7689, respectively), and the funnel height was uniformly
sampled between 1 and 13cm. Two summary statistics were
computed from the resulting granular formation (i.e., the
5th and 50th percentile of granular radial distance, which
approximated the inner and outer radii of a ring). BayesSim
was then evaluated on a testing set to infer the funnel
height from these two summary statistics; the height was
estimated within 0.0530±0.2221cm. For the demonstration,
summary statistics were chosen to correspond to a desired
pattern of two concentric rings with an inner pile. BayesSim
inferred corresponding funnel heights of (27.1,10.1,1.5cm).
The robot was commanded to pour couscous from these
heights, resulting in the desired pattern (Figure 6).

The second demonstration evaluated how closely the
presented framework could predict undesirable spilling during
a granular pouring task. The calibrated simulator was used to
simulate the pouring of couscous and barley into a cereal bowl,
with the simulation relaxation constant increased from 0.75

Number of grains that bounce out at different heights (3 pours each)

Pouring Couscous Pouring Barley

15cm 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Simulation Robot Simulation Robot
Inferring pouring height

for ring pattern

30cm 23, 20, 18 12, 15, 8 1, 0, 0 3, 2, 3

45cm 52, 50, 53 46, 36, 44 4, 12, 10 22, 11, 24

60cm 133, 90, 116 115, 95, 127 35, 48, 49 33, 40, 42

Fig. 6: Two granular manipulation tasks were tested. (Left): The height of
the funnel is inferred to create a desired ring shape. We demonstrate this by
creating a pattern of three concentric rings. (Right): A real-life scene pouring
grains into a bowl is recreated in simulation. At various different heights,
both the simulation of couscous and barley perform well in estimating the
magnitude of grains to leave the cereal bowl.

to 0.9 to ensure accurate simulation of high-speed collisions.
The number of grains that spilled out of the bowl was counted.
The industrial robot was then used to precisely repeat the
experiment in the real-world, pouring grains into a velvet-lined
cereal bowl to match simulator conditions. As tabulated in
Figure 6, in most cases, the calibrated simulator predicted the
number of spilled grains across different pouring heights with
surprising accuracy. (Please see the supplementary video.)

VII. DISCUSSION AND FUTURE WORK

In this paper, the material parameters of granular ma-
terials were inferred using a new framework combining
likelihood-free Bayesian inference, efficient simulation, and
simple experiments. The use of GPU-based simulation and
off-the-shelf depth cameras may be particularly appealing
for robotics applications. Simulation-to-simulation inference
was highly accurate, and simulation-to-experiment inference
trailed closely in performance. Robotics demos showed that
the inferred parameters generalized well to different pouring
heights, and furthermore, that a robot can effectively reason
about granular material to pour desired granular formations
and predict its behavior in dynamic scenarios.

There are numerous exciting opportunities for future work
in perceiving and reasoning about granular materials. To
improve inference, observations can be amended to include
temporal sequences of depth images, with additional summary
statistics to capture transient dynamics. To enhance simulation,
the Isaac Simulator can be applied to model cohesion, allow-
ing liquid-to-solid interactions (e.g., capillary bridging); in
addition, simulated particle geometries could be represented as
superquadrics [41], enabling more accurate approximation of
complex real-world grain geometries. Finally, more elaborate
robotic manipulation tasks can be explored, such as moving
the end effector along a trajectory to create an asymmetric
grain trail, or vibrating the end effector to induce or mitigate
granular jamming.
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TAKE HOME MESSAGES

• Epistemic and aleatoric uncertainty can help to develop 
algorithms for different purposes (active learning, multi-
modal trajectories).

• Bayesian likelihood-free inference is a powerful tool to 
connect black-box models with data-driven methods.

• BayesSim infers the uncertainty over simulation 
parameters and use it for robust Sim2Real.
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SUMMARY


