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1. Motivation

Object detection

« Bounding box (2D or 3D) + Classification score

« Deep learning has advanced object detection

« Most object detectors are deterministic — we need probabilistic detectors!

@ > >
On-board sensors Neural Network Car: 0.86

[Qi, et al., CVPR’18]
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1. Motivation

Autonomous car in the wild

Adverse weather Night drive Unseen objects
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1. Motivation

Reliable uncertainty builds trust

“From an ecological and
evolutionary perspective,
humans may turn out to be
good intuitive statisticians ...”

[Cosmides, et al., Cognition’96].
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1. Motivation

Increasing robustness of the general system

Object located Yes (Prob. = 90%) = TN
I I
A Object “Pedestrian” | |
@ E> classified E> : !
I
Camera signal Uncertain ! - }
On-board sensors LiDAR signal Certain N .
Decision making
Probabilistic perception Prediction
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1. Motivation

What can an ideal probabilistic object detector look like?

Front car Front car Left car Left car
recognized localized recognized localized

Uncertain Very uncertain

Car 55%

Car 95%

&

LiDAR Uncertain

Camera Uncertain
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1. Motivation

An ideal object detector should model uncertainties ...

* Holistic: uncertainties in cls + reg
Front car Front car Left car Left car
recognized localized recognized localized

+ Well-calibrated: represent empirical frequency i S very uncertain _

. Car
 Explainable: Car 95%
 reflect environmental noises |:|
E
« Comparable among sensors —n T e
« reflect model deficiency Camera | Uncertain
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1. Motivation

Our attempts towards probabilistic object detectors

Can We Trust You? On Calibration of a Probabilistic Object Detector for

Autonomous Drivin,
. N . . Deep Active Learning for Efficient Training of a LiDAR 3D Object Detector 2
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time

LiDAR 3D Object Detection

Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural
Network For Lidar 3D Vehicle Detection

Di Feng'?, Lars Rosenbaum', Claudius Gliser!, Fabian Timm!, Klaus Dietmayer®

Klaus Dietmayer*

Di Feng!, Lars Rosenbaum! . Fabian Timm!, Kiaus Dietmaye

Di Feng', Lars Rosenbaum', Klaus Dietmayer® -

cemtes ) = e

buact_To ssare that an autonomens <ar is drivi Abstract— Ve present a robust realime LIDAR 3D object  introducing he eroscedastc alatoric unceriaintes - the un- [ =B L | — || I

ity on bk souds, s bt deict modle shoud ne s, ot o e st sl i bt sprosn soor o s vy o et t

nl ot cormty, e ahow s prediction sondepee i, i the dat gl The method sty dding sty . J i

chL rm hieeh detectors driven by decp learing o outputs 1o model the aleatoric uncertainties, m trainit varytng ana i

ok gupliciy model wpcetaintes in ek v Tt v o, 1 i . b - et 3
% etwork leams (o focus more on informaliy: raining samples s [\ ) L

and ignore the noisy ones. We call our method PROD
d’mnmmmc Real-time Object Dector). Our contributions
can be summarized as follows:

sy The dekeclorevrages 20 egon proposs eeried
e o reduce the search space of objects
24 e ap he i procs. Expriment o tht our

Fig. 1: A state-of-the-art probabilistie LIDAR 3D object deteetor s uncalibrated uncertainties. (a). Each detection
the LIDAR Bind'scye view planc i colorzed acordin to e sfimas scors The 95% pos confidence intervals in the
o cach dtetion. (b Ve visuin the uncriamy icatibration
problem by the calibration ploL. (c). Ihmg our proposed uncertainty recalibration techniques, we significantly improve: the,
uncertainty estimation quality. (d). The detection results afier unceriainty recalibration.

+ We model heteroscedastic aleatoric uncertainties in a 3D
and query functions. and can se up fo 6% lbelng lforts

object detection retwork using LIDAR point clouds. hik reehing the same network's per o
+ We show that by leveraging the aleatoric unceriainties, erwards—~Ohjct delction, detp nearal metvork, acihe

performance by 1% <% by modelng the aeatoric
uncertainty.

L INTRODLCTION

Knowing what an abject detection model s wnsure about
15 o paramount importance for safe autonomous driving. For
‘example If an autonomous car recognizes 2 front object 25
a podestrian but is uncertain abou its location, the sysem
may warn the driver 10 take over the car at an carly stage or
slow down 10 2%0id fatal accidents

Decp leaming has been introduced o object detection in
the autonomous diving at wse cameras [1}13),
Lidar (4101, o Doth 11} 1171, and s st te bench

ark on many populir dalasels e.5 1, Cilyscapes
190 Hawewr, 1 the best of our knowkdge, none.of
these. methods allow for the estimation of uncertainy in
Pmdn b i Monover: s sl

o normalize the scor: vector on the

o cssiyin obct, wich Goes ot necssarly et
the classification uncertanty in the modzl. As a resul, these
decp leaming based objec detctions can only tel the Fuman
drivers whar they have seen, but not how cersain they ar

ut it

There are two types of uncertainly that we can quaniify
in the object detection e work. Episemic uncertainy
model uncertainty. indicates how uncertain an object detector
is o explain the observed dalasel. Alealoric uncerainty
conversel, captures the observation noises that are inherent
in sensors. For insiance, detecting an abnormal object tht is

emic uncertainty, whike detecting a distant object may result
in’high aleatoric uncertainy. Capturing both uncerainies

D Fers. L Ko g i Roor B Gt Cupere
e e et D
s Demaror & vith s o Mossummens. Cool o i
o T s
The v i U e ca o e asch.

Fig 1: Our proposed probabilistic Lidar 3D vehicks detection
network takes the Lidar point clouds as input. It not only pre-
dits bjct clasesand 3D bounding bores but o pmmfb
and the sensor observation unceriai
(50 and Mot
the classifcation uncertinty, and Total Variance (TV) the
localization uncertainty. These scores wil be described in
ec. IV.

the object deection netwark is indispensable for safe
ionmos Griving a th episimic ucenanty displays he
limitation of deteetion models, while the aleatoric uncertzinty
can provide the sensor observation nodses for object tracking.
In this work, we develop practical methods 10 capture
ina3p
for Lidar point clouds. Our contribotions ae three-fold

- We extract model uncertainty and bservation uncer-
tainty for the vehick recognition and 3D bounding box
regression tasks.

« We show an improsement of vehicke deiection perfor-

ance by modeling the aleatoric uncertainty.

« We study the difference between the episiemic and
‘alkeatoric uncertanty, The fomer is associated with the
vehicle delection accuracy, while the lattr is influenced
by the vehicle distance and occlusion.

The remainder of the paper is structured as follows

Sec. Il summarizes related works. Sec. 11l illustrales the

architectre of our probabilisic Lidar 3D vehicle detection

making our method bighly desicable for autonomous driving
‘applicatior

L. INTRODUCTION

A robust and accurate object detection system using on-
board sensors (e.g. camera, LIDAR, Radar) is crucial for
the road scene understanding of autonomous driving. Among
different sensors, LIDAR can provide us with accuraie depth
information, and s robust under different illumination con-

Ruman der 1o (ager th emerency brakns hecave 1
was uncertain with the driving situation [1]

Receny, dep laming approaces e brough g
cant mprovement o the object deection problem [21. M
methods have been proposed that use LIDAR point o
I3FT11 o s tem vith camers g [12H{191, Hon-

@ us deterministic bounding box regression

o o e represent recogition probaility
which does not necessarily represent uncertainties in the
network [201. In other words, they do not provide detection
confidence regarding elassification and localization. For &
robust perception system, we need to explicitly model the
network’s uncertainties

Towards this goal, in this work we build a probabilistic
2-stage-based object detector from LIDAR point clouds by

D L R, Fbin T e i Rt B Gl
o Dever Assstance Sysims sl Amomsied Driing,
71

 Demyer wm Inti of Messrmen. Cot 12V
ctectoglon: Ut Usersty B8 U
T ki 5 o o P st

the network produces stale-of-the-art results and signir-
icantly increases the average precision up o 9%
pard 0 the baslne mthod witbost any wcsrany
estimation:

- Wesy \kmmﬂll\ study how the aleatoric uncertainties
behave. We show thal the uncertainties are related with
ah o an ae temens by multiple factors such
as detection distance, occlusion, softmax score, and

orientation

In the sequel, we first summarize related works in Sec. If,
and then deseribe our proposed method in Ses. 111 in de-
wil. Sec. IV shows Lhe experimental resulis regarding the
improvement of object detection performance by keveraging
aleatoric uncertainties and undersianding how the uncertain.
ties behave. Sec. V summarizes the work and discusses
future research. The video of this work i provided as
supplementary materil

11, RELATED WORKS

In the following, we summarize methods for LiDAR-
based object detection in autonomous driving and uncertainty
quantification in deep neural networks

A LilMR-based Object Detection

rks process the LIDAR information directly from
ot clouds (31 51,71, 141131171, Tor example Zhou
et al[5] propose a vose feature encoding layer to handie 3D
eint clouds L ] enloys 2 30 flly comolton) el

Tor discRzed ot clouds 10 pedet bz
mzp and a 3D bounding box map. Other works project 3D
point clouds onto a 2D plane and use JD comvolutional
TEMWOIK (0 process these LIDAR feature maps. They can
be represenled by froni-view cylindrical images [4]. [12],

Kearning, aulonomous driving

L. INTRODUCTION

Dicp leaming has in recent years set the henchmark for
object detection task on many open datasets (e.2. KITTI [1]
Clyapes 12, and s e e de o for the percep-
tion module in autonomous driving. Despite ts high perfor-
nanc, raining acoep bjotdetcir ealy mauses s uge
amount of labeked sampies. Labeling them i a tdious and
time consuming work, especially for amaotating 3D LIDAR
points, as discussed in [3]. Therefore, dereloping methods
10 reduce aheling effors is highly expected. Furthermore, a
common way 0 opimize 2 deep object detector i feeding
ll ring sampis 0 e ehcrk wih oo st

lowever, he informaliveness of each training sample diffrs,
ie. some are more informative and contibuie moe to the

ormance gain. while some others e s informative
A more eflickent Rining suaiegy is to opimize netvork
with only the most informative samples. This i specifical
heipful when adapting an object detector (o rew driving
senarios which 1 difen o the previus i st
€. from highway 10 urban scenari

Active leaming [4] is a training sirategy to reduce human
annotation efforts whik maximizing the performance of
a machine leaming medel (usually in supervised-leaming
fashion). In active leaming, a mode] ileratively evaluaies the

! R s G, Capre oy Driver s Sy

g Auo 17127 R, ey
Lab, KTH Roya nsto of

i S o oy

Fig. 1: Our proposed active keaming method to efficiently
irain a LIDAR 3D object detector. The network iteratively
stmats the uertain in e unlbekd data oo, qeres

human snnotator the most informative. sampls, and
urmmmm the newly-labeled data

informativeness of unlabeled data, querizs the most informa-
tie samples with human annotators, and updates with newl
labeled data. Active learming has long been applied o Sup-
part Vector Machine (SVM) or Gaussian Process (GP) (S}
8], and has only recently been used in deep leaming for
clasification of medical images [9] or hyperspectral images

in remoke sensing [10]. road-scene image segmentation [11]
it s pressi 121
& propose an active leaming framework (o

Jhc\emh i Gt docir o aonomos
driving, a5 in Fig 1. We assume that there exists a large-
scake unlabeled data pool for LIDAR point clouds, and the
network can iteratively query the human annotator with
the class label and 3D geometical information of obiects
We use the network’s prediciive uncertainty to quaniify the
inomathersss of 3 ample n he unlabeled data pool. To
further reduce the labeling efforts as well as 1o incease the
Iin processwe propos o v 2D oyt proposls
in RGB images which can be provided by the searching
algorithm e g. selective search) or pre-trained image detector
e.2. Detectron [13]). These proposals serve as seeds to locale:
objects, so that the human annotator only meeds to label
LiDAR poinis within n\.\mm (see Fig. |

Our contributions summarized s follows (1) We
opose 1 deep actve L‘zmmfv framework to significantly

Abstruct— Refiskl wncotrinty fimion & crocal e Py
tion systems in safe sulonomous driving. Kecently, many meth-
i b been proposed fo model uncertainties in decp learning-

In recent years, methods have been proposed
‘maodel uncertaintics in deep neural networks. Among lhrm
the directmodcing pprvich ssums 4

i he network outputs (¢ g Gaussian distribu-

duce well-calibrated uncertainties, and generalize well between
ierent datasets.

L. INTRODUCTION
inty estimation in obj i i
crucial for safe autonomous driving. Inwitively, a probabilis.
e objct dtector shoud et nerintes hal rich the
natural frequency of comect predictions. For example, if the
dotoctor makes prodistions with 0.9 probabil
of thus: predicions should be corrct. Reliablo uncerainty
estimation builds rust betwoen a driverlss car and its users,
as humans have an intuitive notion of probabilities in a
freg e [1]. Moreover, the uncestais
ot dtetors an b propagaic o b s, such a5
tracking and motion planning (2], so that the overall sysiem
robustness can be enhanced.

s captu

G, oo Roscurd, e st s
and Auiomatcd Drving, 71272 Renaingen, Germae

Lt of Msement, Conrl i Mictechciogs, Ut Unier

st 39081 Uln, ey

our colcagucs Flosian Fon and Florisn Drcws fo their
W aic thank Tl
i The vide 0 this paper can b found at i

PSP TvayH,

Tiyoutu be/

mm), and uses additional ovput layers to predict parameters
for such a distribution. Duc 10 it simplicity and real-time im-
plementation, this method has heen widely applied to object
deteetors in autonomous driving [3|-{8]. However, we find
that the dircet modeling approach fails to produce ro
probabiliics, causing uncrtainty miscalibration problems.
Using such an unreliable uncertainty cstimation in object
tectors can lead (o wr omous
a the planning stage), which may cause futa
e, opecaly n sl e scomaio,
I 3 ify uncertainty miscalibration problemns
in a probabilistic LiDAR object detection netwark (Sec
wia calibration plots (Se. e, we propose three prac
tical methods based on recalibration technigues to alleviate
such miscalibration (Sec. (V). and sysiematically study thei
robustncss on scveral datascts. Experimental results show
that our methods can signifieantly reduce the uneertainty cal-
ibration crrors and improve the delection accuracy (See.[VI)

IL RELATED WORK
A. Uncertainty Estimation for Object Detection

The methods to model uncertsinty in object detection can be
categorized into two groups: the ensemble approach and the
dircct-modeling approach. The former builds an cosemble of
wbject detectors 4o appmximate an output probability distr-
bution with samples, g using Monte Carlo Dropout [9],
“This approsch has shown to represent the model uncertainty,

[Feng et al., ITSC’18] [Fengetal., IV'193] [Feng et al., IV’19b] [Feng et al., IROS’19]

CR/AEV4]2019-11-08
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2. Uncertainties in object detection networks
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2. Uncertainties in object detection networks

What kind of uncertainties can we model in object detection networks?

« Epistemic uncertainty: model’s capability to describe data

« Aleatoric uncertainty: observation noises (e.g. environment, sensors)

(a) Input Image (b) Ground Truth (¢) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty
CR/AEV4 | 2019-11-08 BOSCH




2. Uncertainties in object detection networks

Modeling uncertainties via Bayesian neural networks [MacKey, Neural’92]

PO [[plyBx, Wp(WD)EW

[N\

Predictive uncertainty Aleatoric uncertainty Epistemic uncertainty

X : |Input vector Y : Prediction output vector
D : Training dataset W : Network weight variables

CRIAEV | 2019-11 BOSCH
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2. Uncertainties in object detection networks

Modeling uncertainties in object detection networks: a big work

Region Proposal
Network (RPN)
Lidar bird’s eye
view feature maps ee———eem——————
Non-maximum

' For each ROI
1

|

|

|

|

|

|

|

|

|

|

|

|

H suppression

A = - |
(S Pr(class)

o - . . Faster-RCNN
re-processing networ head (FRH)

heading

[Ren et al., NeurlPS’15]
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2. Uncertainties in object detection networks
State of the art

Estimating Test Set
uncertainty = (Deployment)
Unlabeled data pool

Training and
Validation Set

Querying data

[Fengetal., ITSC’18] [Truong et al., ITSC’'18] [Feng et al., IV'19b] [Miller et al., ICRA’18]
Uncertainties in a LIDAR detector Uncertainties in an image detector Active learning for a probabilistic detector Detection in open-set conditions.

[Miller et al., ICRA’19] [He et al., CVPR’19] [Harakeh et al., 19] [Meyer et al., CVPR’19]
Uncertainty and merging strategy Localization uncertainty and nms Localization uncertainty and nms Localization uncertainty and nms
CR/AEV4 | 2019-11-08 BOSCH
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3. Probabilistic LiDAR object detectors
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3. Probabilistic LIDAR object detectors

Summary

« Bayesian neural network framework
* Model-related uncertainties (epistemic)
« Environmental noises (aleatoric)

>
=
« Two & One stage object detector '-g e e
e L - 2
| g_ e 4 {-
« Systematic analysis S T T 7
o - J g—w e .. 1 Ground truth |
O I~ EN |
; V/gj gv 1 . |
=D ‘1 positional |
r , _
é/ﬁ{ { confidence |
I
e

0%
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3. Probabilistic LIDAR object detectors

Epistemic and aleatoric uncertainties behave very differently [Fengetal., ITSC’18]

=N

— X-axis
— Y-axis
— Z-axis

w

Total Variance
(Epistemic)
= N

PCC=0.83

S A
oY oY P X Pl NP Y gLo7
NN NN N RN *8 .
[/\0 P\O 1/\0 P\O 1/\0 [’\0 !/\0 /\ !/\0 \0 Ef—(/ .
N :
SN 2NN PN PN N
20030 PCC=0.77
X o
28 0.25
0.20
g m) 0.61 : 0015 PCC=0.91 4
S — X-axis ;%010
— = —-— _ . NE e
g 5 0.4 Y-axis 2=
. 0.05 4
T —— Z-axis
8~ gl PCC=0.31
F 0.2 \/‘X 25100 "‘/\/
2 —
E G075 \//\
' T o A ' 10 20 30 40 50
Q"\’ 0"1' Qf‘b Qr Q(") QF NS Q‘b 0(‘2) Distance (m)
SN RN NN N
N A R R R . . .
NN IERNIERN NN N PCC: Pearson Correlation Coefficient
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3. Probabilistic LIDAR object detectors

Aleatoric uncertainty represents environmental noises [Feng et al., 1V'193]

Uncertainty scores at log scale
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Detection in RGB image

Detection in LiDAR point clouds

CR/AEV4]2019-11-08

Detection Information

Uncertainty score: -2.92
Softmax score: 0.87
Distance: 7.5 m
Occlusion: fully visible
Orientation: 92.1°

-1.0

~1.5

=2.0

-2.5

-3.0

Uncertainty scores at

LiDAR points within the bounding box
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3. Probabilistic LIDAR object detectors

Using aleatoric uncertainty to improve detection accuracy [Feng et al., 1V’193]

Comparison of 3D Car detection performance on KITTI val set [Geiger et al., CVPR’12]

AP (%) APggy (%)
Method Easy @ Moderate  Hard | Easy  Moderate  Hard
F-PointNet (LiDAR) | 69.50 62.30 59.73

86.79 80.75 76.60

PIXOR - - -
VoxelNet 81.97 05.46 02.85 | 89.60 84.81 78.57
Baseline 71.50 63.71 57.31 | 86.33 76.44 09.72
Ours +7.31 +2.18 +7.88 [ +0.7 +0.71 +7.23

* Baseline is the object detector without any uncertainty estimation.

[Qi et al.,, CVPR’18] [Zhou et al., CVPR’18] [Yangetal., CVPR’18]
CR/AEV4 | 2019-11-08 BOSCH




3. Probabilistic LIDAR object detectors

Using epistemic uncertainty to improve training efficiency [Feng et al., [V'19b]

0.775- - ¥ Estimating
uncertainty —
LiDAR 3D Unlabeled data pool

0 7 5 0 i Object detector

~ Training Querying data

0.725; S e
LiDAR points " i - Labeling
: : : : SRR
- ok e e iy !Eqm
:' . J \%%w i.":‘.:w ~ ~ e~ 2

=& : Human annotator
—J— Active learning s g
| ¥ —4— Baseline e

0 3000 6000 9000 12000
Number of labeled samples

Recognition Accuracy
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3. Probabilistic LIDAR object detectors

Can we trust uncertainty estimation? [Feng et al., IROS’19]

Calibration plot

1.0

e
00

If a model makes predictions
with 0.8 probability score, 80%
of those predictions should be
correct.

Under-confident

o
o

Empirical probability
s O
= <

=
T
0
o
>
=h
o
®
>
(s

o
()

—— Perfectly calibrated

—— Uncalibrated prediction

. -
0 0.2 0.4 0.6 0.8 1.0

~

Predicted probability
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3. Probabilistic LIDAR object detectors

Importance of well-calibrated uncertainty

Cyclist detector

=

Fatal accident !

_ L

(Over-confident detection )
. A )
(Under-confident detection )

J

(Reliable detection

! Safe and sound

\

J
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3. Probabilistic LIDAR object detectors

Identifying miscalibrated uncertainties in an one-stage detector [Feng et al., IROS’19]

(a) Classification

1.0 —>
= Perfect prediction

== Uncalibrated prediction

= = =
IS oy o0

Empirical probability

o
b

0.0

yq|

0.25 0.50 0.75
Predicted softmax score

0.00

CR/AEV4]2019-11-08

1.00

(b) Regression

1.0
m— c05())
m— sin (0
osf — 3
06E " log(w)
= log(l)

Perfect
prediction

Empirical confidence level

0'00.0 0.5 1.0

Predicted confidence level
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3. Probabilistic LIDAR object detectors

Proposing three uncertainty recalibration methods to largely reduce uncertainty
calibration error

4 (a) Uncalibrated detection N\ ( (b) Calibration plot ) (" (c)Calibrationplot ) [ (d) calibrated detection )
100%pg* W 100% I
I 10 ]
¥ 4 —_— Eeﬁe;;prtetijctiozl . Re He — Perfect prediction 4
— ncalibrate: rediction - . "
- l i' | ‘ ' %‘ 08 p Ib . os = Calibrated prediction = I Ei ' ' '
v ? 3 calibration 2 v = - Y 4
S - 1 1 8 06 E 06 9 % i
wn - a ) " _ .
S n > = 8 oa %04 © n \ N
Elr—g—ilg | 5 £ Elrai'gn |
= o . £ o = e -
I B - 1 .02 0.2 B .= |
3 I H |§ . wl £ UQ) ! H lEﬁ
| 95% positional " _i. -y w | 95% positional T =
confidenc 1 =M onfidence 1 =g M :
i : i = 0%0 02 04 06 08 10 00 o2 o2 o6 o8 1o i : i =g
1 . o 1 1
\ 0% bomomoooo- JAN Predicted probability ) L Predicted probability )\ ox b J
H
[Feng et al., IROS’19]
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3. Probabilistic LIDAR object detectors

Recalibrating uncertainties - classification [Fengetal., IROS’19]

100% 100%

o e

S o

[&] (5]

w w

& &

€ El o\ W e

‘g S | Ground truth

n n
i 95% Positional |
| Confidence |

I I 1
................
0% . 0% .
Uncalibrated Calibrated
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3. Probabilistic LIDAR object detectors

Recalibrating uncertainties - regression (marginal probability) [Feng et al., IROS’19]

Softmax score
Softmax score
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3. Probabilistic LIDAR object detectors

Our LIiDAR object detectors model uncertainties:

« Holistic: cls+reg; in two/one-stage detectors; epistemic/aleatoric uncertainties
- Well-calibrated: after uncertainty recalibration [Feng et al., IROS’19]

« Explainable:

« Reflect environmental noises such as distance & occlusion [Fengetal., ITSC'18 & 1V’19a]
« Reflect model’s accuracy [Feng etal., ITSC’18]

* Improve detection performance [Feng et al., IV’193]
» Improve training efficiency via active learning [Feng et al., IV’19b]

CR/AEV4]2019-11-08 BOSCH




Problem solved? No!

2 9 CR/AEV4]2019-11-08

Left car
recognized

Left car
localized

Very uncertain

Front car Front car
recognized localized
Uncertain

Car 55%

&;
LiDAR Uncertain

Camera Uncertain

Car 95%
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4. Challenges

Can we compare uncertainties in multi-modal perception systems?

I
LiDAR Points

REVOLUTION 5 16—
S A o
ERRT G Fopn

"“AMBASSADOR s

Vehicle

Road sign

Feng et al., "Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and
Challenges." IEEE Transactions on Intelligent Transportation Systems (2019). Minor revision.
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4. Challenges

Are those captured uncertainties useful?

Object located Yes (Prob. = 90%)

i

|

P Object “Pedestrian” |
@ E> classified E> :
i

Camera signal Uncertain

On-board sensors LiDAR signal Certain

Decision making
Probabilistic perception Prediction

« Can uncertainty improve the tracking performance?
« Where can we really see the benéefit of uncertainty? (e.g. safety-critical scenarios)

CR/AEV4]2019-11-08 BOSCH
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