Towards Safe Autonomous Driving: Capture Uncertainty in Deep Object Detectors

Di Feng

Perception and Sensors for Autonomous Driving Corporate Research, Robert Bosch GmbH, Stuttgart

> Nov. 8, 2019 IROS 2019, Macau

Outline

1. Motivation

- 2. Uncertainties in object detection networks
- **3. Probabilistic LiDAR object detectors**
- 4. Challenges

2

Object detection

- Bounding box (2D or 3D) + Classification score
- Deep learning has advanced object detection
- Most object detectors are deterministic we need **probabilistic** detectors!

[Qi, et al., CVPR'18]

Autonomous car in the wild

Adverse weather

Unseen objects

https://www.flickr.com/photos/davidmoisan/3120533363/ https://www.flickr.com/photos/wackelijmrooster/4095146153 https://commons.wikimedia.org/wiki/Category:Embilipitiya

CR/AEV4 | 2019-11-08

Reliable uncertainty builds trust

"From an ecological and evolutionary perspective, humans may turn out to be good intuitive statisticians ..."

[Cosmides, et al., Cognition'96].

https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/robotcompanions-to-befriend-sick-kids-at-european-hospital

Increasing robustness of the general system

On-board sensors

6

Decision making

What can an ideal probabilistic object detector look like?

An ideal object detector should model uncertainties ...

- Holistic: uncertainties in cls + reg
- Well-calibrated: represent empirical frequency
- Explainable:
 - reflect environmental noises
 - Comparable among sensors
 - reflect model deficiency
- Useful

Our attempts towards probabilistic object detectors

		Dam Antine Learning for Efficient Training of a LiDAR 2D Object Detector	Can We Trust You? On Calibration of a Probabilistic Object Detector for Autonomous Driving
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection	Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection	Deep Active Learning for Efficient Training of a LiDAR 3D Object Detector	Di Feng ^{1,2} , Lars Rosenbaum ¹ , Claudius Gläser ¹ , Fabian Timm ¹ , Klaus Dietmayer ²
Di Feng ¹ , Lars Rosenbaum ¹ , Klaus Dietmayer ²	Di Feng ¹ , Lars Rosenbaum ¹ , Fabian Timm ¹ , Klaus Dietmayer ²	Di Feng ^{1,4} , Xiao Wei ^{1,2} , Lars Rosenbaum ¹ , Atsuto Maki ² , Klaus Dietmayer ⁴	(a) Uncalinated detection (b) Calibration plot (c) Calibration
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	<text><text><text><text><text><footnote><footnote><text><list-item><list-item><list-item><list-item><text><text><text><text></text></text></text></text></list-item></list-item></list-item></list-item></text></footnote></footnote></text></text></text></text></text>	<text><text><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></text></text>	<figure><figure><figure><figure><text><text><text><footnote><footnote><footnote><footnote></footnote></footnote></footnote></footnote></text></text></text></figure></figure></figure></figure>
Eenglet al ITSC'18]	[Feng et al., IV'19a]	[Feng et al., IV'19b]	[Feng et al., IROS'19]

Outline

1. Motivation

2. Uncertainties in object detection networks

3. Probabilistic LiDAR object detectors

4. Challenges

What kind of uncertainties can we model in object detection networks?

- Epistemic uncertainty: model's capability to describe data
- Aleatoric uncertainty: observation noises (e.g. environment, sensors)

[Kendall et al., NeurIPS'17]

Modeling uncertainties via Bayesian neural networks [MacKey, Neural'92]

- : Training dataset
- **Y** : Prediction output vector
- W : Network weight variables

also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Modeling uncertainties in object detection networks: a big work

[Ren et al., NeurIPS'15]

State of the art

[Feng et al., ITSC'18] Uncertainties in a LiDAR detector

[Truong et al., ITSC'18] Uncertainties in an image detector

[Feng et al., IV'19b] Active learning for a probabilistic detector

[Miller et al., ICRA'18] Detection in open-set conditions.

[Miller et al., ICRA'19] Uncertainty and merging strategy

[He et al., CVPR'19] Localization uncertainty and nms

[Harakeh et al., 19] Localization uncertainty and nms

[Meyer et al., CVPR'19] Localization uncertainty and nms

Outline

1. Motivation

2. Uncertainties in object detection networks

3. Probabilistic LiDAR object detectors

4. Challenges

Summary

- Bayesian neural network framework
 - Model-related uncertainties (epistemic)
 - Environmental noises (aleatoric)
- Two & One stage object detector
- Systematic analysis

Car probability

Epistemic and aleatoric uncertainties behave very differently [Feng et al., ITSC'18]

PCC: Pearson Correlation Coefficient

BOSCH

Aleatoric uncertainty represents environmental noises [Feng et al., IV'19a]

Uncertainty scores at log scale

[Feng et al., IV'19a]

Detection in RGB image

Detection in LiDAR point clouds

LiDAR points within the bounding box

Using aleatoric uncertainty to improve detection accuracy [Feng et al., IV'19a]

Comparison of 3D Car detection performance on KITTI val set [Geiger et al., CVPR'12]

Method	$AP_{3D}(\%)$			$AP_{BEV}(\%)$		
Wiethou	Easy	Moderate	Hard	Easy	Moderate	Hard
F-PointNet (LiDAR)	69.50	62.30	59.73	-	-	-
PIXOR	-	-	-	86.79	80.75	76.60
VoxelNet	81.97	65.46	62.85	89.60	84.81	78.57
Baseline	71.50	63.71	57.31	86.33	76.44	69.72
Ours	+7.31	+2.18	+7.88	+0.7	+0.71	+7.23

* Baseline is the object detector without any uncertainty estimation.

[Qi et al., CVPR'18] [Zhou et al., CVPR'18] [Yang et al., CVPR'18]

20 CR/AEV4 | 2019-11-0

Using epistemic uncertainty to improve training efficiency [Feng et al., IV'19b]

Can we trust uncertainty estimation? [Feng et al., IROS'19]

If a model makes predictions with 0.8 probability score, 80% of those predictions should be correct.

Calibration plot

Predicted probability

Importance of well-calibrated uncertainty

Identifying miscalibrated uncertainties in an one-stage detector [Feng et al., IROS'19]

BOSCH

Proposing three uncertainty recalibration methods to largely reduce uncertainty calibration error

[Feng et al., IROS'19]

Recalibrating uncertainties – classification [Feng et al., IROS'19]

BOSCH

Recalibrating uncertainties – regression (marginal probability) [Feng et al., IROS'19]

BOSCH

27 CR/AEV4 | 2019-11-08

Our LiDAR object detectors model uncertainties:

- Holistic: cls+reg; in two/one-stage detectors; epistemic/aleatoric uncertainties
- Well-calibrated: after uncertainty recalibration [Feng et al., IROS'19]
- Explainable:
 - Reflect environmental noises such as distance & occlusion [Feng et al., ITSC'18 & IV'19a]
 - Reflect model's accuracy [Feng et al., ITSC'18]
- Useful
 - Improve detection performance [Feng et al., IV'19a]
 - Improve training efficiency via active learning [Feng et al., IV'19b]

Problem solved? No!

Front recog	5.25	Front car localized	Left car recognized	Left car localized					
Like	ely	Uncertain Very uncertain		Unlikely					
	Car 55% Car 95%								
Lidar	Uncertain								
Camera	Uncertain								
Radar	Certain								

4. Challenges

Can we compare uncertainties in multi-modal perception systems?

Feng et al., "Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges." *IEEE Transactions on Intelligent Transportation Systems* (2019). Minor revision.

30 CR/AEV4 | 2019-11-08

4. Challenges

Are those captured uncertainties useful?

On-board sensors

Probabilistic perception

Prediction

- Can uncertainty improve the tracking performance?
- Where can we really see the benefit of uncertainty? (e.g. safety-critical scenarios)

THANK YOU

Perception and Sensors for Autonomous Driving Bosch research Di Feng | Lars Rosenbaum | Fabian Timm | Glaudius Gläser

Contact: Di.Feng@de.bosch.com

Collaborators Christian Haase-Schütz | Heinz Hertlein | Klaus Dietmayer Werner Wiesbeck | Maki Atsuto | Xiao Wei | Yifan Cao Fabian Duffhauß

References

[Qi et al., CVPR'18] Qi, Charles R., Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. "Frustum pointnets for 3d object detection from rgb-d data." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 918-927. 2018.

[Cosmides et al., Cognition'96] Cosmides and J. Tooby, "Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty," *Cognition*, vol. 58, no. 1, pp. 1–73, 1996.

[Feng et al., ITSC'18] Feng, Di, Lars Rosenbaum, and Klaus Dietmayer. "Towards safe autonomous driving: Capture uncertainty in the deep neural network for lidar 3d vehicle detection." In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3266-3273. IEEE, 2018.

[Feng et al., IV'19a] Feng, Di, Lars Rosenbaum, Fabian Timm, and Klaus Dietmayer. "Leveraging heteroscedastic aleatoric uncertainties for robust realtime lidar 3d object detection". In 30th IEEE Intelligent Vehicles Symposium, 2019.

[Feng et al., IV'19b] Feng, Di, Xiao Wei, Lars Rosenbaum, Atsuto Maki, and Klaus Dietmayer. "Deep active learning for efficient training of a lidar 3d object detector." In 30th IEEE Intelligent Vehicles Symposium, 2019.

[Feng et al., IROS'19] Feng, Di, Lars Rosenbaum, Claudius Gläser, Fabian Timm, and Klaus Dietmayer. "Can we trust you? On calibration of a probabilistic object detector for autonomous driving." In IEEE/RSJ International Conference on Intelligent Robots and Systems Workshop, 2019.

[Kendall et al., NeuralPS'17] Kendall, Alex, and Yarin Gal. "What uncertainties do we need in bayesian deep learning for computer vision?" In Advances in neural information processing systems, pp. 5574-5584. 2017.

[MacKey., Neural'92] MacKay, David JC. "Bayesian interpolation." Neural computation 4.3 (1992): 415-447.

References

[Ren et al., NeurIPS'15] Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster R-CNN: Towards real-time object detection with region proposal networks." In Advances in neural information processing systems, pp. 91-99. 2015.

[Truong et al., ITSC'18] Le, Michael Truong, Frederik Diehl, Thomas Brunner, and Alois Knol. "Uncertainty Estimation for Deep Neural Object Detectors in Safety-Critical Applications." In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3873-3878. IEEE, 2018.

[Dimity et al., ICRA'18] Miller, Dimity, Lachlan Nicholson, Feras Dayoub, and Niko Sünderhauf. "Dropout sampling for robust object detection in open-set conditions." In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1-7. IEEE, 2018.

[Dimity et al., ICRA'19] Miller, Dimity, Feras Dayoub, Michael Milford, and Niko Sünderhauf. "Evaluating merging strategies for sampling-based uncertainty techniques in object detection." In 2019 International Conference on Robotics and Automation (ICRA), pp. 2348-2354. IEEE, 2019.

[He et al., CVPR'19] He, Yihui, Chenchen Zhu, Jianren Wang, Marios Savvides, Xiangyu Zhang. "Bounding box regression with uncertainty for accurate object detection". In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2019.

[Harakeh et al., 19] Harakeh, Ali, Michael Smart, and Steven L. Waslander. "BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors." *arXiv preprint arXiv:1903.03838*, 2019.

[Meyer, et al., CVPR'19] Meyer, Gregory P., Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, and Carl K. Wellington. "LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving." in *IEEE Conference on Computer Vision and Pattern Recognition*, 2018.

[Yang et al., CVPR'18] Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: real-time 3D object detection from point clouds." In *Proceedings of the IEEE* Conference on Computer Vision and Pattern Recognition, pp. 7652-7660. 2018.

References

[Zhou et al., CVPR'18] Zhou, Yin, and Oncel Tuzel. "Voxelnet: End-to-end learning for point cloud based 3d object detection." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 4490-4499. 2018.

[Geiger et al., CVPR'12] Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the kitti vision benchmark suite." In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354-3361. IEEE, 2012.

