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Object detection

• Bounding box (2D or 3D) + Classification score

• Deep learning has advanced object detection

• Most object detectors are deterministic – we need probabilistic detectors!
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Autonomous car in the wild

Adverse weather Night drive Unseen objects

https://www.flickr.com/photos/davidmoisan/3120533363/

https://www.flickr.com/photos/wackelijmrooster/4095146153

https://commons.wikimedia.org/wiki/Category:Embilipitiya

4



CR/AEV4 | 2019-11-08

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Reliable uncertainty builds trust 
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[Cosmides, et al., Cognition’96].

“From an ecological and 

evolutionary perspective, 

humans may turn out to be 

good intuitive statisticians …”

https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/robot-

companions-to-befriend-sick-kids-at-european-hospital
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Increasing robustness of the general system
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What can an ideal probabilistic object detector look like?
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An ideal object detector should model uncertainties …
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• Holistic: uncertainties in cls + reg

• Well-calibrated: represent empirical frequency

• Explainable:

• reflect environmental noises

• Comparable among sensors

• reflect model deficiency

• Useful

Car 95%

Front car 

recognized

Front car 

localized

Left car  

recognized

Left car 

localized

Likely Uncertain Very uncertain Unlikely

LiDAR Uncertain

Camera Uncertain
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Our attempts towards probabilistic object detectors

9

[Feng et al., IV’19a] [Feng et al., IV’19b][Feng et al., ITSC’18] [Feng et al., IROS’19]
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What kind of uncertainties can we model in object detection networks?

• Epistemic uncertainty: model’s capability to describe data

• Aleatoric uncertainty: observation noises (e.g. environment, sensors)
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[Kendall et al., NeurIPS’17]
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Modeling uncertainties via Bayesian neural networks 
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[MacKey, Neural’92]

Aleatoric uncertainty Epistemic uncertaintyPredictive uncertainty

: Prediction output vector: Input vector

: Training dataset : Network weight variables
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Modeling uncertainties in object detection networks: a big work
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Non-maximum 
suppression 

[Ren et al., NeurIPS’15]
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State of the art
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[Feng et al., ITSC’18]  

Uncertainties in a LiDAR detector

[Truong et al., ITSC’18]

Uncertainties in an image detector

[Feng et al., IV’19b]                             

Active learning for a probabilistic detector

[Miller et al., ICRA’18]            

Detection in open-set conditions.

[Miller et al., ICRA’19]        

Uncertainty and merging strategy

[He et al., CVPR’19]                      

Localization uncertainty and nms

[Harakeh et al., 19]                  

Localization uncertainty and nms

[Meyer et al., CVPR’19] 

Localization uncertainty and nms
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Summary

• Bayesian neural network framework

• Model-related uncertainties (epistemic)

• Environmental noises (aleatoric)

• Two & One stage object detector

• Systematic analysis
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Epistemic and aleatoric uncertainties behave very differently
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[Feng et al., ITSC’18]

PCC: Pearson Correlation Coefficient
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Aleatoric uncertainty represents environmental noises 
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[Feng et al., IV’19a]



CR/AEV4 | 2019-11-08

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

[Feng et al., IV’19a]
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Using aleatoric uncertainty to improve detection accuracy 
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[Feng et al., IV’19a]

Comparison of 3D Car detection performance on KITTI val set [Geiger et al., CVPR’12]

* Baseline is the object detector without any uncertainty estimation.

[Qi et al., CVPR’18] [Yang et al., CVPR’18][Zhou et al., CVPR’18]
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Using epistemic uncertainty to improve training efficiency
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[Feng et al., IV’19b]

Active learning
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Can we trust uncertainty estimation? 
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[Feng et al., IROS’19]

If a model makes predictions 

with 0.8 probability score, 80% 

of those predictions should be 

correct.
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Importance of well-calibrated uncertainty
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Identifying miscalibrated uncertainties in an one-stage detector
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(a) Classification (b) Regression

[Feng et al., IROS’19]



CR/AEV4 | 2019-11-08

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Proposing three uncertainty recalibration methods to largely reduce uncertainty 

calibration error
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[Feng et al., IROS’19]
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Recalibrating uncertainties – classification
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Uncalibrated Calibrated

[Feng et al., IROS’19]
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Recalibrating uncertainties – regression (marginal probability)

27

Uncalibrated Calibrated

[Feng et al., IROS’19]
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Our LiDAR object detectors model uncertainties:

• Holistic: cls+reg; in two/one-stage detectors; epistemic/aleatoric uncertainties

• Well-calibrated: after uncertainty recalibration

• Explainable:

• Reflect environmental noises such as distance & occlusion

• Reflect model’s accuracy

• Useful

• Improve detection performance

• Improve training efficiency via active learning

[Feng et al., IROS’19]

[Feng et al., IV’19a]

[Feng et al., ITSC’18]

[Feng et al., ITSC’18 & IV’19a]

[Feng et al., IV’19b]
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Can we compare uncertainties in multi-modal perception systems? 

Feng et al., "Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and 

Challenges." IEEE Transactions on Intelligent Transportation Systems (2019). Minor revision.
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Are those captured uncertainties useful?

Object located Yes (Prob. = 90%)

Object 

classified 

“Pedestrian” 

(Prob. = 60%)

Camera signal Uncertain

LiDAR signal CertainOn-board sensors

Probabilistic perception Prediction 

Decision making

• Can uncertainty improve the tracking performance?

• Where can we really see the benefit of uncertainty? (e.g. safety-critical scenarios)
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