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Abstract— The fusion of multiple sensor modalities, especially
through deep learning architectures, has been an active area
of study. However, an under-explored aspect of such work is
whether the methods can be robust to degradations across their
input modalities, especially when they must generalize to degra-
dations not seen during training. In this work, we propose an
uncertainty-aware fusion scheme to effectively fuse inputs that
might suffer from a range of known and unknown degradations.
Specifically, we analyze a number of uncertainty measures, each
of which captures a different aspect of uncertainty, and we pro-
pose a novel way to fuse degraded inputs by scaling modality-
specific output softmax probabilities. We additionally propose
a novel data-dependent spatial temperature scaling method to
complement these existing uncertainty measures. Finally, we
integrate the uncertainty-scaled output from each modality
using a probabilistic noisy-or fusion method. In a photo-realistic
simulation environment (AirSim), we show that our method
achieves significantly better results on a semantic segmentation
task, compared to state-of-art fusion architectures, on a range
of degradations (e.g. fog, snow, frost, and various other types
of noise), some of which are unknown during training. We
specifically improve upon the state-of-art[30] by 28% in mean
IoU on various degradtions.

I. INTRODUCTION
Image-based scene understanding methods for robotics,

such as object detection and semantic segmentation, have
been extensively studied and steadily improved in the past
few years. The use of multiple sensing modalities on robots
is common, however, and therefore there is an increasing
interest in leveraging additional sensor information to com-
plement image data. For example, depth information can help
better separate objects that are hard to distinguish based on
textures and color.

Utilizing multiple modalities entails fusion of different
sensor streams that potentially provide complementary in-
formation. For example, depth estimation typically degrades
quickly with distance, either in accuracy or resolution. Many
works have explored where to fuse modality-specific streams
topologically [27, 9, 30]. In general, researchers have at-
tempted different fusion schemes such as early, late and
hierarchical fusion schemes. Many works have also explored
fusion schemes at different levels of representation in order
to increase the interaction of different modalities [9, 30].

However, the variety of scenes and degradation in the real
world presents a challenge to all fusion schemes. The ability
to automatically adapt to a changing environment is the key
to safety in application such as robotics and autonomous
driving. A robust fusion scheme should dynamically adapt
to sensor failure and noise, emphasizing the modalities that
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Fig. 1: Performance of state-of-the-art fusion model and
ours on degraded RGB data. First row: Snow. Second row:
Impulse noise. Third row: Brightness degradation. Note that
the depth channel is not degraded.

are less corrupted and more informative. Various works
with different gating and attention mechanisms [21, 31, 30]
have demonstrated the importance of weighting different
modalities depending on the scene. Yet, there has been few
works on adapting to a variety of degradation and noise.
This is especially true for addressing degradations that do not
appear in the training data, i.e. that are unknown a-priori.

In this paper, we investigate an adaptive fusion scheme
for unseen degradations with application to RGB-D semantic
segmentation. We leverage recent development in uncertainty
estimation for deep neural networks [6, 15] and show that
different uncertainty measures correlate differently to differ-
ent types of degradations. We therefore propose a method
to combine multiple types of uncertainties by representing
their deviation from the training set (deviation ratio), and
use this criteria in a novel way to calibrate the output
prediction probabilities. We further add an additional novel
data-dependent spatial temperature scaling that models a spa-
tial type of uncertainty not covered by existing approaches.
Given uncertainty-modulated outputs from each modality,
we finally propose a simple but flexible uncertainty-aware
probabilistic fusion method with no learning parameters and
show robust performance across different degradation. We
show using a photorealistic simulator (AirSim [28]) across



a variety of conditions such as fog, snow, and various types
of noise, that our method achieves stronger fusion results
than current state-of-art. Our improvement is especially
noticeable in the cases where the specific degradations are
not represented in the training set. Fig. 1 shows examples
of performance of the state-of-the-art model SSMA [30]
and our proposed method. Our method achieves a relative
improvement in mean IoU of 11% over our strong baselines
and 28% over state-of-art fusion methods.

The contributions of this paper are as follows:
• We propose a method for combining several uncertainty

metrics, which capture different aspects of uncertainty,
using a deviation ratio that encodes how the metrics
deviate from the training set.

• We introduce an additional uncertainty method, the
spatial temperature network, which captures a data-
dependent spatial uncertainty that is absent in the exist-
ing uncertainty metrics.

• We propose a probabilistic uncertainty-aware fusion
scheme, Uncertainty-aware Noisy-Or (UNO), that dy-
namically adapts to the changing environment by com-
bining an arbitrary set of experts (e.g. modalities or
architectures). Our method has several advantages, in-
cluding speed (i.e., no training needed) and the ability
to dynamically fuse an arbitrary (potentially changing)
set of modalities.

• We demonstrate significantly increased robustness of
our method, compared to state-of-art fusion baselines,
on a photo-realistic simulation-based dataset across
a range of degradations, including ones that are not
present in the training set.

II. RELATED WORK

Fusion Architectures for RGB-D Semantic Segmenta-
tion A number of fusion architectures have been developed
for combining modalities [27, 9, 30], and recently it has
been shown that variations of attention and gating mecha-
nisms [16, 2, 32] can adapt to dynamic environments by
weighting modalities differently for conditions that occur in
the training data. While most works [21, 31] have considered
external environmental degradations such as rain, snow,
glare, low-lighting, and seasonal appearance changes, more
recent works [17] address robustness to different types of in-
ternal image degradations such as Gaussian noise. However,
we observe that these methods are both trained and tested
on the same subset of degradations–the test set noises are
in the training distribution and hence explicitly learn-able by
the network. Although [12] include ways to augment data by
applying many of the common corruptions and perturbations,
we posit that it is unrealistic to anticipate every degradation
that may be encountered. Hence, our methods attempt to
address this key limitation of current work, namely their
inability to reliably and feasibly address all possible forms
of degradations. For more details on the recent trends and
architectures for multimodal fusion, we refer to [26].

Noisy-Or Approximate Bayesian Inference We model
the fusion process as Bayesian inference. Under certain

Fig. 2: Fusing experts with Noisy-Or. Each modality-
specific expert generates an uncertainty-based distribution.
Final prediction is obtained through a (leaky) Noisy-Or
fusion.

cause-independent assumptions [11], the conditional proba-
bility in a Bayesian network can be approximated by a Noisy-
Or gate [25]. Unlike logical-or, Noisy-Or is more realistic
because each parent has a non-negligible probability of being
inhibited. Practically for fusion, this means that no hard
threshold is needed and predictions from each modality are
considered with non-negligible probability. This framework
has been expanded to include a leak probability which
accounts for causes not covered by all of the independent
parents [13].

Uncertainty Estimation We are interested in an un-
certainty estimator that correlates well with the degree of
anticipated and unanticipated degradation. Regarding unan-
ticipated degradation, there are many works on detecting
misclassification and out-of-distribution (OOD) data by mea-
suring certain notions of uncertainty or confidence. It has
been noted that out-of-distribution images can be identified
through epistemic uncertainties [15]. Many other per-pixel
uncertainty measures have also been developed and com-
pared in [1] including ODIN [19], Bayesian networks [14,
23], density estimation [4], and OOD training [3].

In particular, Bayesian networks [14, 23] have been shown
to yield desirable properties for modeling uncertainty, such
as a model confidence that correlates with accuracy. Their
methods involve using Monte-Carlo dropout (MCDO) [7] as
the primary means of approximate inference, with several
measures such as predictive entropy and mutual information
that can be calculated from these sampling passes.

We show in our scenarios that model uncertainty (approx-
imated by dropout) does not correlate with all degradations,
and calibration methods such as temperature scaling [8],
must be trained on the specific degradations that will be
encountered. In our work we propose a novel uncertainty-
based calibration as well as a data-dependent spatial form
of temperature scaling; we then combine multiple notions of
uncertainty to maximize robustness.

III. METHOD
In this section, we introduce the Uncertainty-aware Noisy-

Or (UNO) fusion scheme. We briefly highlight three con-
ventional uncertainty metrics, each of which captures a
different element of uncertainty, and our proposed deviation
ratio in Section III-A that allows us to combine these



Fig. 3: Overall pipeline for a single expert (RGB branch). We combine multiple uncertainty metrics using the deviation
ratios (δs) calculated for a test sample using different uncertainty metrics. Deviation ratio is defined in Section III-A. Either
stochastic model or deterministic model is used at a time. The performance of both is examined in Section IV-C.

uncertainty metrics. We then describe a novel learning-based
uncertainty metric, TempNet (see Section III-B) for capturing
a data-conditioned spatial uncertainty that is not covered by
the existing approaches. Finally, we propose a probabilistic
framework for mutli-modal fusion in Section III-C.

In the discussions below, we define C as the set of classes
we are interested in classifying, U as the set of employed
uncertainty metrics. We view each modality-specific segmen-
tation networks as different experts and denote {E1, .., Ei} ∈
E as the set of independent segmentation networks (experts).
A. Uncertainty Estimation and Deviation Ratio

A number of methods exist for producing uncertainty
estimates over the output predictions of a neural network [8,
6, 15], namely predictive entropy, mutual information, and
deterministic entropy. While many works focus on the accu-
racy of such estimates, we propose to use them to re-weight
modalities during fusion. Unlike hand-chosen weighting
methods [24] that use uncertainty, we propose to modulate
modalities in a novel way through automatic scaling of the
outputs scores (and hence softmax probabilities); this proce-
dure is similar to calibration methods [8] but conditioned on
uncertainty. The goal of uncertainty scaling is to “soften” the
softmax probabilities depending on how different (i.e. out-
of-distribution) the uncertainties are from the training data.

We first describe the existing uncertainty metrics used in
this paper, as proposed by [6]. The predictive entropy of a
predictive distribution, H[y|x,Dtrain], given a test sample x
and training data Dtrain can be approximated by collecting
outputs from T stochastic forward passes with different
dropout samples through the network (i.e. MCDO):

Ĥ[y|x,Dtrain] ≈

−
C∑
c

(
1

T

∑
t

p(y = c|x, θ̂t) log
1

T
p(y = c|x, θ̂t)

)
, (1)

where c is over all classes and p(y = c|x, θ̂t) is the
probability mf class c given input x and θ̂t is the sampled

weights at stochastic pass t.
The mutual information can be approximated with a similar
procedure:

Î[y, w|x,Dtrain] ≈ Ĥ[y|x,Dtrain]

+
1

T

∑
c,t

p(y = c|x, θ̂t) log p(y = c|x, θ̂t), (2)

We also compare with the entropy of a deterministic model:

H[y|x,Dtrain] =

−
∑
c

p(y = c|x, θ) log p(y = c|x, θ), (3)

where w is the model’s learned parameters and is fixed at
inference (note only one forward pass is required).

To automatically scale the output probabilities conditioned
on the degradation level, a new metric that scales dynam-
ically with uncertainty is needed. We propose to capture
how deviated a test sample is from the training distribution
using uncertainty metrics. We define a deviation ratio, which
reports a numeric score less than unity if a test sample is out-
of-distribution and unity if the sample is in-distribution (note
that intuitively degradations should increase uncertainty).
Specifically:

δ =
µtrain

max (0, µtest − µtrain − σtrain) + µtrain
, (4)

where µtrain is the training average of a specific uncertainty
metric aggregated across all images and averaged over pixels
in the training set and σtrain is the standard deviation of the
uncertainty metric scores. µtest is the average uncertainty
score for a test sample. The uncertainty metrics provide
pixel-wise scores, which we average over an entire image.
We perform this averaging step because the per-pixel un-
certainty metrics can be unreliable as a local indicator of
deviation, as shown by [1]. Thus, from the three uncertainty
metrics listed above, three deviation ratios can be calculated:



Fig. 4: RGB uncertainty measurements with significant
fog degradation. Conventional uncertainty metrics do not
capture the spatial degradation caused by fog.

average mutual information (Ave.MI), average predictive
entropy (Ave.PreEn) and average entropy (Ave.En).

In the end, we combine the deviation ratios of different
metrics using a Min operation. Intuitively, we choose the
metric that is most sensitive to the current degradation, adopt-
ing a conservative selection method in which we assume
worst-case for a model’s uncertainty.

δmin = min ([δi : i ∈ U]) , (5)

To calibrate a network to reflect uncertainty in the presence
of degradation, we define the uncertainty-calibrated predic-
tion as follows.

pi = Softmax
(
[l1i , ..., l

c
i ] ∗ δmin

)
, (6)

where [li1, ..., l
i
c] are the pre-softmax logits. Thus, if a sample

is far from the training distribution, δ will be a scalar
less than 1 and thus ”softens” the distribution and makes
the model less confident in its prediction. The complete
segmentation and scaling pipeline for the RGB branch is
shown in Fig. 3.

For each modality-specific expert, a different δmin is
calculated. For the multimodal expert, we do not extract new
deviation ratios; rather a second Min operation is performed
on all the δmin’s from involved modality-specific experts.

B. Spatial Temperature Network (TempNet)

In the calibration literature, conventional temperature scal-
ing [8] is not able to adapt to different test conditions
because it utilizes a scalar trained to a specific calibration
set. Another observation is that degradation is often regional.
For example, fog affects vision further into the distance
and a good temperature model should be able to flatten the
distributions for points more distant from the viewpoint.

We therefore introduce a spatial and data-conditioned tem-
perature network to capture uncertainty induced by degrada-
tion. We show that the output of this model can be interpreted
as an uncertainty which is not captured by conventional

uncertainty extraction methods. As an example, Fig. 4 shows
an example of fog degradation and corresponding uncertainty
maps. These uncertainties capture uncertainty along edges of
objects but do not capture spatial uncertainty.

TempNet is a shallow version of SegNet and uses 2
convolution and pooling/upsampling blocks for the decoder
and encoder. Unlike prior methods, it is conditioned on the
data, i.e. the input to the temperature network is the same
as for the segmentation network and the output is a single-
channel spatial temperature map, T ∈ do × do. The average
temperature deviation ratio (Ave.Temp) uses the average of
the test spatial temperature map and applying Eq. (4).

To train TempNet, we minimize the Negative Log Likeli-
hood of the correct class label for each pixel.

pij = Softmax ([l1, ..., lc]ij ∗ tij) , (7)

L = −
∑
ij

log (pij(y = c|x, θ)) , (8)

where tij is the ith row and jth column element of the
temperature map T and lij is the pre-softmax logit of the
segmentation output. The segmentation network is pretrained
and kept fixed when training the temperature network. The
same training procedure is done independently per modality.

C. Noisy-Or Fusion

We now introduce our proposed probabilistic fusion
scheme that combines the uncertainty-modulated outputs of
each modality. The final predictive distribution for a pixel
is obtained by a Noisy-Or operation for each class and then
normalized across all classes:

I(y = c) = 1−
∏
i

1− pi(y = c|xi, θi) ∀i ∈ E, (9)

p(y = c) =
Ic∑
j Ij

∀j ∈ C, (10)

where pi(y = c|xi, θi) is the predictive probability of expert
i for class c, xi and θi are the input and parameters of expert
i and pc is the final probability for class c.

Figure 2 illustrates the fusion process. In Bayesian net-
works, Noisy-Or can be used to model causality between
N causes E1, E2, ..., EN and their common effect Y under
certain independent causality assumptions: 1) Each of the
causes is sufficient to produce the effect in the absence of
all other causes, and 2) The ability of being sufficient is not
affected by the presence of other causes. Practically Noisy-
Or has some desirable properties for fusion. It preserves
disagreement and accentuates agreement between experts.
Another unique property of Noisy-Or compared to other
methods such as multiplication, which simply multiplies two
probabilities is, that when multiple experts give different
predictive distributions to some discrete classes, it is possible
that Noisy-Or selects the class on which one expert is really
confident regardless of agreement on other classes while still
being robust to outliers. A toy example demonstrates the
flexibility of Noisy-Or in Fig. 5.

We argue that these independent causality assumptions
are satisfied because each Ei is a complete segmentation



Fig. 5: Noisy-Or vs. Multiplication 4 class prediction
Example. Row 1: Expert 1 is confident in class 1 while
expert 2 is uncertain. Noisy-Or selects case 1 whereas Mult
selects case 2 on which the two experts agree the most. Row
2: A third expert gives a confident prediction for class 2, and
both Noisy-Or and Mult select case 2.

network capable of producing a probability pi(y = c|xi, θi)
independent of other experts and is not affected by the
presence of others. The leak node models the causes not
covered by the independent experts. In our case, we adopt
an off-the-shelf RGB-D fusion model as as the leak node.

The causality independence assumption makes this frame-
work flexible. It is easy to add or remove new modality-
specific experts and multimodal expert can be introduced
as a leak node. By incorporating multiple uncertainty-aware
modality-specific experts and multimodal experts into one
framework, our Noisy-Or fusion model is robust to OOD.

IV. EXPERIMENTS

A. Dataset

We utilize the AirSim [28] simulator to collect a RGB-
D semantic segmentation dataset. To collect this dataset,
we fly a drone between road intersections in the AirSim
City Environment, and we record the same trajectory under
different weather settings, such as snow and fog, that can be
varied on a scale from 0 (lowest intensity) to 100 (highest
intensity). Note that a 100 setting does not correspond to
complete snow whiteout or fog blackout. All models are
trained on 0 and 50 fog levels. In order to evaluate both in-
and out-of-distribution degradations, the models are tested
on these same fog levels, in addition to a fog level of 100,
frost, snow, and various degradation augmentation techniques
investigated in [12]. For these augmentations, we use a
severity of 3 (on a scale from 0 to 5) which equates to about
a 50% decrease in average precision according to [22]. We
randomly select the between-intersection segments to be a
part of either training, testing, or validation sets. RGB and
depth frames were captured at 512x512 pixels, and following
the work of [5] we use a jet mapping to frame our depth
inputs. Overall, our dataset contains 6857 labeled training
images, 472 validation images and 359 testing images to
which we apply both in- and out-of-simulation degradation.

Fig. 6: Effects of the temperature map on RGB soft-
max outputs. Temperature map captures spatial uncertainty
caused by fog (it is less confident in the foggy area). Smaller
temperature (darker coloring) indicates lower confidence

B. Benchmarking

For comparison, we consider two state-of-art learned mul-
timodal fusion schemes: FuseNet [9] and SSMA [30]. To
make the SSMA framework comparable to FuseNet and
UNO, we replace the original ResNet-50 encoder [10] to
SSMA with a VGG 16-layer encoder [29] To measure
overall performance of our segmentation networks, we use
the mean intersection-over-union (mIoU) metric [20].

All models are trained for a maximum of 500K iterations
using Adam [18] with a learning rate of 10−5 and default
settings, and the best on the validation set is chosen for
evaluation. When training the temperature map and scaling
parameters, we use a two-step procedure [8]. We first train
our network on the segmentation task with our training set.
Then we find the optimal parameters for temperature for
100K iterations while the segmentation network is fixed.

C. Results

Fusion Performance In this section, we report the results
of uncertainty-based Noisy-Or fusion with different deviation
ratios as an ablation study in Table I and compare our adap-
tive fusion architecture to other fusion methods in Table II.
Table I shows that MCDO-based uncertainties as a global
indicator of OOD ratio do not outperform single-pass entropy
and the min operation can effectively choose the most sen-
sitive uncertainty depending on the degradation. Therefore,
we use min(Ave.Temp,Ave.En) as the deviation ratio for our
model in the following experiments because MCDO-based
uncertainties require multiple passes with higher computation
costs and longer runtime at inference. Table II compares our
methods (UNO without SSMA as a leak expert and UNO++
with) to other fusion methods. The results demonstrate that
our method outperforms the state-of-the-art fusion models on
unseen degradations and can be easily applied to any off-the-
shell multimodal fusion model to improve its performance



In Distribution RGB Degradation Depth Degradation
0 fog 50 fog 100 fog MotionBlur Frost Snow Brightness Blackout Impulse Gaussian ShotNoise Impulse Average

1, Ave.Temp 80.75 77.79 75.73 73.36 75.59 74.89 72.47 78.71 78.74 68.22 72.34 64.86 74.45
2, Ave.En 82.62 79.70 77.34 81.21 80.37 79.50 78.32 79.65 79.43 77.55 79.32 47.62 76.89

3, Ave.PreEn 80.80 77.79 77.17 79.68 78.78 78.06 77.51 78.65 78.52 75.47 77.62 45.43 75.46
4, Ave.MI 80.81 77.80 78.07 78.28 78.14 78.05 78.30 73.41 76.69 75.76 77.62 47.84 75.06

min(1,2) 82.62 79.69 77.67 81.24 80.38 79.57 78.33 79.72 79.43 77.55 79.32 64.80 78.36
min(1,3,4) 80.77 77.75 78.14 78.29 78.35 77.94 78.09 78.53 78.52 75.79 77.64 63.53 76.95

TABLE I: Ablation: performance of Noisy-Or fusion with different deviation ratios (uncertainty metrics) on Mean IoU.
Ave.Temp and Ave.En require a single deterministic pass whereas Ave.PreEn and Ave.MI require multiple MCDO passes.

In Distribution RGB Degradation Depth Degradation
0 fog 50 fog 100 fog MotionBlur Frost Snow Brightness Blackout Impulse Gaussian ShotNoise Impulse Average

SoftMult 84.25 81.22 77.57 72.22 75.79 74.73 71.28 61.80 64.69 50.48 64.46 40.65 68.26
SoftMult(T) 84.24 81.24 76.88 71.90 74.90 74.88 70.37 59.93 62.86 52.36 65.78 43.46 68.23
NoisyOr 82.56 79.69 76.47 72.81 75.22 71.84 71.84 70.81 77.76 63.74 68.14 47.47 71.76
NoisyOr(T) 82.56 79.74 75.87 72.65 75.69 73.85 71.13 69.13 77.19 64.04 68.52 49.19 71.63

FuseNet [9] 85.41 80.61 80.98 73.24 71.59 69.33 70.85 49.94 54.55 3.37 5.58 4.40 50.89
SSMA [30] 87.35 82.89 82.58 73.94 69.88 65.80 70.90 33.02 34.15 51.08 55.35 42.93 62.49

UNO 82.62 79.69 77.67 81.24 80.38 79.57 78.33 79.72 79.43 77.55 79.32 64.80 78.36
UNO++ 86.70 83.51 83.23 83.11 82.33 81.70 80.37 79.13 79.79 78.28 79.86 61.97 80.00

TABLE II: Comparison: performance of UNO and UNO++ against other non-learning and learning baselines on Mean IoU.
SoftMult(T) and NoisyOr(T) use the original temperature scaling [8].

In Distribution RGB Degradation Depth Degradation
RGB/D 0 fog 50 fog 100 fog MotionBlur Brightness Blackout Impulse Gaussian ShotNoise Impulse

1, Ave.Temp 1.00/1.00 1.00/1.00 0.97/1.00 1.00/1.00 0.82/1.00 0.03/1.00 0.05/1.00 1.00/0.88 1.00/0.93 1.00/0.75
2, Ave.En 1.00/1.00 1.00/1.00 0.97/1.00 0.54/1.00 0.48/1.00 0.46/1.00 0.26/1.00 1.00/0.47 1.00/0.32 1.00/1.00

3, Ave.PreEn 1.00/1.00 1.00/1.00 0.79/1.00 0.39/1.00 0.41/1.00 0.51/1.00 0.35/1.00 1.00/0.50 1.00/0.30 1.00/1.00
4, Ave.MI 1.00/1.00 1.00/1.00 0.42/1.00 0.13/1.00 0.18/1.00 0.88/1.00 1.00/1.00 1.00/0.42 1.00/0.22 1.00/1.00

TABLE III: Sensitivity: average test deviation ratio using different uncertainty metrics for in/out of distribution conditions.

across degradations. Also, our baseline Noisy-Or shows
better results than SSMA under unseen degradations. This
shows that multimodal expert is less robust when any of its
input modality is degraded in a manner not known a-priori.
Note also that normal temperature scaling does not provide
additional improvement across degraded conditions.

Temperature Maps We qualitatively show that conven-
tional uncertainty metrics such as predictive entropy and
mutual information from multiple MCDO stochastic passes
or entropy from a single deterministic pass fail at detecting
uncertainty associated with degradation. The temperature
map, on the other hand, captures the spatial degradation as
shown in Fig. 6. As shown in table III, when the temperature
map is used as a global scaling deviation ratio it is sensitive
to various degradation and especially when there is Impulse
noise or blackout degradation on the RGB or depth channel.
We hypothesize that TempNet learns data-dependent spatial
uncertainty due to spatial noise through training whereas
other uncertainties extract pixel-wise statistical uncertainty
based on predictive distributions.

Uncertainty and Degradation In this section, we report
the average test deviation ratios calculated from all aforemen-
tioned uncertainty metrics including average temperature for
in-distribution and different unseen degraded conditions. As
shown in table III, we list the average deviation ratio for

in-distribution conditions, i.e., 0 fog and 50 fog conditions,
and various degradation on RGB input or depth input respec-
tively. The table shows that all metrics report a deviation ratio
of unity on average for in-distribution data and mostly less
than unity for OOD inputs. However, they exhibit different
sensitivity. For example, average temperature is sensitive to
blackout and impulse noise and not as responsive for motion
blur and brightness degradation on the RGB channel. On the
contrary, MCDO uncertainties and entropy are inactive to
Impulse Noise, justifying our combination of uncertainties.

V. CONCLUSION AND FUTURE WORK

We have presented an adaptive framework for multi-
modal fusion that, unlike existing fusion methods, addresses
unanticipated, out-of-training degradations. We benchmark
different measures of uncertainty and propose a novel
uncertainty-based softmax scaling as well as a deviation
ratio for combining uncertainty metrics. We also propose
a new data-conditioned spatial uncertainty (TempNet) and
a simple but effective noisy-or fusion scheme that can
combine an arbitrary number of modalities. Results show
superior performance to existing state-of-art and extensibility
for incorporating them as additional experts. Next steps
include experimentation with additional uncertainty metrics
and analysis of their trade-offs.
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