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Abstract— Uncertainty modeling is one of the recent trends
in deep learning. Even though the uncertainty modeling is
important in many applications, it has been overlooked until
recently. In this paper, we propose a method of learning
covariance for visual odometry. Unlike the existing supervised
learning based uncertainty estimation, we introduce an unsu-
pervised loss for uncertainty modeling. The learned uncertainty
includes epistemic (model-driven) and aleatoric (data-driven)
uncertainties.

I. INTRODUCTION

We usually model the state of a robot as a Gaussian
distribution with a mean and variance. For a reliable state
estimation, we need to consider both the mean and variance.
However, the importance of uncertainty is sometimes over-
looked and the performance of the estimator is measured only
by the mean values. As shown in the examples of utilizing
uncertainty for practical robotics applications, variance is
as important as mean values. For instance in simultaneous
localization and mapping (SLAM), the influence of each
measurement is determined by the sensor measurement un-
certainty. In active SLAM or belief space planning, the
objective function relies heavily on the expected uncertainty.
Moreover, uncertainty is required for the safe decision mak-
ing as in the navigation of self-driving cars.

We propose a method of modeling uncertainty in sensor
measurements and its application to SLAM. Among various
sensor measurements, our focus is on the camera-based
visual odometry (VO), which is particularly challenging to
specify uncertainty. This is because camera is an extroverted
sensor and uncertainty in VO relies both on the external
environment where the image is taken and on the process
of matching consecutive image frames. In this work, we
propose a method of considering both the uncertainty from
the environment (data uncertainty) and the uncertainty from
the measurement process model (model uncertainty).

We follow the unified approach of estimating model and
data uncertainty using deep networks proposed by Kendall
and Gal [1]. Unlike the other supervised learning based
approaches, we propose a fully unsupervised uncertainty
learning scheme that does not require ground truth mea-
surement error. To the best of our knowledge, it is the
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first report of unsupervised uncertainty learning for VO.
In addition, to overcome the limitation of unsupervised
learning of single sensor uncertainty, we provide a covariance
balancing scheme that enables the network to learn relative
magnitudes of uncertainties from different sensors.

II. UNSUPERVISED LEARNING OF UNCERTAINTY

A. Supervised Uncertainty Learning

According to Kendall and Gal [1], epistemic (model) and
aleatoric (data) uncertainty can be estimated using deep
networks as

Σ̂y = Σ̂y,epi + Σ̂y,ale
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1) Epistemic uncertainty: One practical approach of
learning epistemic uncertainty is by using dropout as an
approximation of Bayesian Neural Networks (BNNs) [2].
Epistemic uncertainty is obtained by using dropouts also
at test time. The empirical variance is computed from T
stochastic forward passes as
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where ŷ denotes the network output.
2) Aleatoric uncertainty: Along with the predictive mean

value, aleatoric uncertainty can be trained by making the
output of the network as

[ŷ, Σ̂y,ale] = f(x), (3)

where f indicates the network model and x is the input data.
Given a dataset D = {xi,yi | ∀i ∈ [1, · · · , N ]}, the loss

for training aleatoric uncertainty is

Lsup =
1

N

N∑
i=1

||yi − ŷi||2Σ̂yi,ale
+ log |Σ̂yi,ale|, (4)

where || · ||2Σ denotes Mahalanobis distance, normalizing the
error with variance as ||e||2Σ = e>Σ−1e.



B. Unsupervised Uncertainty Learning

We reformulate the described uncertainty learning process
to make the two uncertainties trainable in an unsupervised
manner. We propose the unsupervised uncertainty learning
loss, which consists of two terms as in (1). Similar to the
supervised uncertainty, epistemic uncertainty is obtained via
dropout sampling as in the same manner in (2).

However, the loss for aleatoric uncertainty should be
modified when training it in an unsupervised manner. In (4),
the ground truth mean prediction y is required. To train the
network without the ground truth, we modified the loss as

Lunsup =
1

N

N∑
i=1

||zi − ẑi||2Σ̂zi
+ log |Σ̂zi

| (5)

by switching the ground truth y and its prediction ŷ into the
measurement z = g(x) and its prediction ẑ = h(x, ŷ). We
introduce measruement function g and h; g converts input
data x to the measurement z, whereas h converts input data
x and the network prediction ŷ to the predicted measurement
ẑ.

The network can directly output Σ̂z when only the
measurement uncertainty is concerned. However, when the
uncertainty of network prediction Σ̂y should be known, we
need to reformulate the measurement uncertainty as
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The reformulated uncertainty includes partial derivatives of
the measurements with respect to the input data x and
network prediction ŷ and their variances. For convenience,
we refer to the first term as data-related uncertainty and
the second term as prediction-related uncertainty. In training
time, the measruement uncertainty Σ̂z should be computed
by using elements in (6). We make the network output data-
related uncertainty in addition to the prediction uncertainty
Σ̂y and compute the partial derivative ∂h/∂ŷ from the
measurement model.

III. UNCERTAINTY BALANCING

Despite successful uncertainty training, a discrepancy be-
tween trained uncertainties from each network might occur
depending on sensor measurement. This is critical when the
uncertainty is trained in an unsupervised manner since no
absolute scale is obtainable.

To solve this issue, this paper proposes covariance balanc-
ing that occurs during the training. To do so, we define the

balancing loss as below.

Lbalancing =
1

N

N∑
i=1

||zai − ẑai ||
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2

Σ̂
za
i
−zb

j︸ ︷︷ ︸
inter-sensor consistency loss

.

(7)

This loss is defined as the sum of the unsupervised loss
from each sensor measurement and the sensor consistency
loss. This derivation allows the normalized uncertainties
based on the direct comparison between sensors.

Here K is a set of indices of corresponding measurements
between sensor a and sensor b. The sensor consistency
loss is computed when the measurements are from the
same sensors. In some cases, we need conversion between
measurements. For this purpose, we use the transformation
between observations by using a transfer function ga→b( · )
as

ẑb∗ = ga→b(ẑ
a). (8)

In the above equation, a and b indicates each sensor modal-
ity.

IV. EXPERIMENT

Follow the literature (UnDeepVO [4]), we initially use the
depth and pose networks. Additional to these two networks,
we add fully connected layers for the pose uncertainty and
decoders for the data-related uncertainty. Next, we refine VO
uncertainty via covariance balancing between two sensors.

The performance of the uncertainty estimation is provided
in comparison to other methods. During the evaluation, the
mean values were kept the same while changing uncertainty
estimation methods. Unsupervised uncertainty means the
estimated uncertainty without balancing. Unsupervised un-
certainty consists of epistemic and aleatoric uncertainty. For
supervised uncertainty, we additionally trained our network
for 30 epochs using the supervised loss in (4) using the
ground truth pose as a label. For the comparison baseline, we
chose DICE [3] by implementing a DICE network predicting
6-DOF pose uncertainty from a single image.

The average log-likelihood of the estimated odometry is
given in Table. I when verified over the KITTI test sequences

TABLE I: Average log-likelihood

method translation rotation all
Epistemic −42.8 −4.98 −54.5
Aleatoric −3.04× 106 −8.10× 102 −1.19× 1010

Unsupervised −16.7 −0.53 −28.7
Supervised 0.56 4.37 0.51
Proposed 0.63 3.54 −0.62
DICE [3] −16.43 2.20 −20.26

Average log-likelihood of uncertainty estimation methods
computed from KITTI test dataset (sequence 09 and 10).
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Fig. 1: Estimated pose errors and uncertainties. We compare the estimation among unsupervised, supervised and balanced
approaches.
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Fig. 2: The estimated covariance of the proposed method on KAIST urban dataset. The graphs shows translational and
rotational errors in each axis and their 3σ bounds depicted with shaded regions. Thumbnail images on the right illustrate
situations where large uncertainty occurs. (a) shows highly dynamic environments with moving cars where large z-axis
uncertainties are captured. (b) represents when the car encounters with a speed bump, causing large uncertainty in roll
motion. Large pitch errors occur at curved roads as shown in (c) and the estimated uncertainty reflects these errors.

[5]. Average log-likelihood reveals how the estimated un-
certainty captures error magnitudes on average. The larger
the value the better performance. Supervised learning (e.g.,
DICE) shows better performance since the supervised loss
is negative of the average log-likelihood itself. Note that the
proposed approach yields comparable numbers even when
trained in an unsupervised manner. The balancing process
enabled the network to learn absolute error magnitudes.
Please note that the proposed uncertainty even better catches
the error fluctuations than the supervised uncertainty does as
seen in Fig. 1. The box plots (Fig. 1(c) and Fig. 1(d)) shows
the uncertainty with respect to the actual error. As can be
seen, the proposed method shows a steady increase.

Fig. 2 illustrates the learned VO uncertainty on the KAIST
urban dataset [6]. The estimated uncertainty follows error
fluctuations as seen in the 3σ value around large error
variation. For example, the thumbnail images represent sit-
uations where uncertainty increases because of dynamic
environments (Fig. 2(a)) and sudden motions (Fig. 2(b)
and Fig. 2(c)). Also, the uncertainty is plausible because
it captures relative magnitude of errors in each axis. For
instance, larger uncertainty in the z-axis is measured since
the driving data has large errors in the travel direction (z-
axis).

V. CONCLUSION

This paper proposed a general unsupervised uncertainty
estimation using deep networks. We aimed to overcome the
limitation of single sensor uncertainty learning by proposing
balancing uncertainties between different sensors. As a vali-
dation, we applied the uncertainty estimation and balancing
methods to end-to-end learning-based VO.
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