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Abstract— This note provides a study of the properties of
commonly used performance measures for probabilistic object
detectors. Modifications to the recently formulated Probability
based Detection Quality (PDQ) are proposed to account for the
probability mass assigned to the category and bounding box
of false positive detections. Empirical results on simulated and
real detections from the COCO dataset are used to show the
effectiveness of the proposed modifications when capturing the
performance of a probabilistic object detector.

I. INTRODUCTION

For safe and robust usage in robotic systems, object
detectors should be able to provide a meaningful estimate
of uncertainty associated with their output detections. To
that end, Hall et al. [1] introduced the probabilistic object
detection task, which requires estimating full probability
distributions relating to the category and bounding box of
every object in the scene.

Performance measures predominantly used to evaluate the
performance of standard object detectors fail to take measure
the performance of full probability distributions provided
by probabilistic object detectors. To that end, performance
measures such as the probability-based detection quality
(PDQ) [1], and the minimum Uncertainty Error (MUE) [2]
have been recently proposed in an attempt to provide quan-
titative measures of performance for probabilistic object
detectors.

This note provides a comparative study of these per-
formance measures in context of the probabilistic object
detection task. Specifically, we provide a theoretical analysis
to determine the advantages and disadvantages of using
recently proposed performance measures, in comparison to
Average Precision. We also propose modifications to the
probabilistic detection quality (PDQ) score, which take into
account the quality of probability distributions relating to
false positive detections. Finally, we provide empirical results
on simulated detections and on the COCO object detection
dataset [3] to verify the proposed improvements.

II. ANALYSIS OF COMMONLY USED PROBABILISTIC
OBJECT DETECTION METRICS

Average Precision (AP) was proposed by Everingham et
al. [4] to evaluate the performance of object detectors, and is
defined as the area under the continuous precision-recall (PR)
curve, approximated through numeric integration over a finite
number of sample points [4]. To perform this computation,
true positives (TP) are defined as any detection D that:
1) has a classification score greater than a predetermined
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threshold δcls and 2) has an intersection-over-union (IOU)
with any ground truth instance greater than a predetermined
threshold, δiou. False positives, on the other hand, are the
set of detections that have failed either of the above two
criteria, and also include duplicate detections that satisfy
both criteria. AP is used to measure the performance of non-
probabilistic object detectors and does not take into account
the uncertainty a detector has in its output.

A. Minimum Uncertainty Error

The Uncertainty Error (UE) was first proposed to evalu-
ate probabilistic object detectors by Miller et al. [2]. The
uncertainty error is calculated as:

UE(δ) = 0.5
|TP > δent|
|TP |

+ 0.5
|FP ≤ δent|
|FP |

, (1)

where δent is a threshold on the entropy of a distribution
associated with the output detection. UE ranges between
0 and 0.5 and can be thought of as the probability that
a simple threshold-based classifier makes a mistake when
using entropy to classify output detections into true positives
and false positives. As the uncertainty error approaches
0.5, using the provided entropy is not much better than
using a random classifier to separate TPs from FPs. The
best uncertainty error achievable by a detector at the best
possible value of the threshold δent is called the Minimum
Uncertainty Error (MUE) and is usually used to compare
probabilistic object detectors in [2], [5].

Similar to AP, MUE is independent of a score threshold,
but requires δiou to determine what detections count as true
positives, and is therefore threshold dependant. Furthermore,
MUE is independent of global linear transformations of
entropy, where shifting the estimated entropy through an ad-
ditive or multiplicative transformation results in an equivalent
shift in δent to maintaining a constant MUE. As a result,
MUE is capable of only providing information on how well
the estimated entropy can be used to separate true positives
from false positives, and not on the actual quality of the
estimated probability distributions.

B. Probability Based Detection Quality (PDQ)

Hall et al. [1] recently proposed PDQ as a metric to
measure the quality of two dimensional probabilistic object
detectors. PDQ can then be written as:

PDQ(G,D) =
1

|G|+NFP

∑
i,j,f

pPDQ(Gfi ,D
f
j ). (2)

Here, Gfi be the ith ground truth object instance in the f th

frame of a dataset, Df
j is the jth matched detection from the

same frame, |G| is the number of ground truth instances in



the dataset, and NFP is the total number of false positives.
The ground truth Gfi is defined by Ŝfi , the set of pixels
defining the object instance’s mask, B̂fi ∈ R4 the object’s
bounding box, and ĉfi ∈ {0, . . . ,K} the object’s category
label. Similarly, the detection Df

j is defined by its bounding
box Sfj , a covariance matrix of the elements of Sfj referred
to as Σf

j and a vector of category probabilities Ifj ∈ RK .
pPDQ is a pairwise probabilistic detection quality measure

that comprises of two quality components, the spatial quality
and the label quality. The spatial quality measures how well
the detector captures the bounding box multivariate Gaussian
distribution, and can be written as:

QS(Gfi ,D
f
j ) = exp(−(LFG(Gfi ,D

f
j ) + LBG(Gfi ,D

f
j ))

LFG(Gfi ,D
f
j ) = − 1

|Ŝfi |

∑
x∈Ŝf

i

log((P (x ∈ Sfj ))

LBG(Gfi ,D
f
j ) = − 1

|Ŝfi |

∑
x∈V̂f

ij

log((1− P (x ∈ Sfj )), (3)

where LFG(Gfi ,D
f
j ) is the foreground loss, LBG(Gfi ,D

f
j )

is the background loss, and V̂f
ij are pixels belonging to the

(Sfj ∪ Ŝ
f
i ) − (Sfj ∩ Ŝ

f
i ). Finally, P (x ∈ Sfj ) is probability

function that maps a set of pixels belonging to a detection
instance’s mask Sfj to spatial probability, and can be inferred
from Sfj and Σf

j .
The label quality on the other hand measures how well

a detector captures the parameters describing the category
label’s categorical distribution and can be written as:

QL(Gfi ,D
f
j ) = Ifj (ĉfi ). (4)

The label quality ranges between 0 and 1 and can be thought
of as the probability of the correct category provided by the
object detector. Finally, the pairwise PDQ is computed as the
geometric mean of the label and spatial qualities of every
detection, and can be written as:

pPDQ(Gfi ,D
f
j ) =

√
QS(Gfi ,D

f
j ).QL(Gfi ,D

f
j ). (5)

PDQ is a very strong measure for the probability mass
assigned by the detector to true positive detections. Further-
more, PDQ uses optimal assignment through the Hungarian
algorithm to assign every ground truth to its best correspond-
ing detection, removing the dependency on IOU thresholding
that is required for AP and MUE. However, PDQ is evaluated
at only a single classification score threshold. Also, PDQ
only accounts for the probability distribution of true positive
detections, a characteristic that can be exploited by detectors
to obtain high scores that do not reflect the true quality of
its provided distributions.

First, a perfect label quality of 1.0 can be achieved by
using a one-hot probability vector Ifj . More formally:

Ifj ∈ {0, 1}
K :

K∑
k=1

Ifjk = 1.0

QL(Gfi ,D
f
j ) = Ifj (ĉfi ) = 1.0,

(6)

for any f, i, j combination. In such cases however, the
detector is assigning a probability of 1.0 to all false positive
detections as well. Since the explicit label quality of false
positives is not penalized, detectors can always achieve
gains in PDQ by simply using a one-hot representation
of Ifj , maximizing their confidence in every detection and
eliminating any value of a category’s uncertainty measure.

Second, for detectors with good localization, a perfect
spatial quality of 1.0 can be achieved by using a Dirac-δ
function for P (x ∈ Sfj ). Specifically, a detector with good
localization decreases V̂f

ij , the set of pixels belonging to a
detection but not to a ground truth instance. A perfect spatial
quality score can then be achieved by assigning the detection
a low variance distribution P (x ∈ Sfj ), which maximizes
LFG(Gfi ,D

f
j ) and hence achieves higher PDQ scores. More

formally, in the extreme case where V̂f
ij = ∅:

QS(Gfi ,D
f
j ) = exp(−(LFG(Gfi ,D

f
j )︸ ︷︷ ︸

∼0

+LBG(Gfi ,D
f
j )︸ ︷︷ ︸

∼0

)

= 1.0, (7)

where LFG(Gfi ,D
f
j ) ∼ 0 from using a dirac − δ function

for P (x ∈ Sfj ), and LBG(Gfi ,D
f
j ) ∼ 0 from V̂f

ij = ∅. For
less extreme situations where the detector has some mistakes
in localization, the terms in Eq. (7) can be controlled by
treating the covariance matrix describing P (x ∈ Sfj ) as a
hyper-parameter. By taking into account the localization ac-
curacy of a detector, the covariance matrix can be optimized
for a balance between LFG(Gfi ,D

f
j ) and LBG(Gfi ,D

f
j ) that

increases the spatial quality and therefore the PDQ.

III. ACCOUNTING FOR FALSE POSITIVES IN PDQ
To take into account the quality of distributions assigned

by the detector to detections that are false positives, we
propose two modifications to the original PDQ. Our proposed
modifications exploit the fact that false positive detections
are mis-classified instances of the background class in
order to formulate spatial and label quality metrics for false
positives. Specifically, a detector should aim to assign a lower
probability mass to the bounding box and category of false
positive detections.

This characteristic can be captured for the label quality
metric by defining a label quality term for every false positive
detection as:

QL−FP (Df
j ) = 1.0−max(Ifj ), (8)

where Ifj is the category probability vector associated with
the false positive detection Df

j . In a similar manner, the
spatial quality metric can be formulated for false positive
detections as:

QS−FP (Df
j ) = exp

(
−(LBG−FP (Df

j )
)
, (9)

where LBG−FP (Df
j ) is the false positive background loss

defined as:

LBG−FP (Df
j ) = − 1

|Sfi |

∑
x∈Sf

i

log
(

(1− P (x ∈ Sfj )
)
,



Fig. 1. Left: Variation in σent as a function of transforming the
Gaussian entropy with additive and multiplicative constants. The Gaussian
MUE remains constant at 0.36 for all transformations. Right: Variation of
Gaussian and Categorical MUE as a function of the iou threshold used to
determine true and false positives. Detections from BayesOD [5] on the
COCO validation dataset were used to generate both plots.

where Sfi is the number of pixels in the false positive
detection mask. The pairwise PDQ can then be computed
for false positive detections in a similar manner as the true
positive detections, and can be added inside the summation
in Eq. (2) to arrive at a modified form of the PDQ. In
conclusion, the proposed modification of Eq. (2) allows a
detector to increase the PDQ score not only by decreasing the
number of false positives, but also by giving false positives
lower label and spatial probability mass.

IV. EXPERIMENTS AND RESULTS

Minimum Uncertainty Error: Fig. 1 shows the change
in the entropy threshold σent when an additive or a mul-
tiplicative constant is applied to the Gaussian entropy used
to determine the Gaussian MUE. In this case, the Gaussian
MUE remains constant at 0.36 regardless of the transforming
constant, which σent compensates for through a transforma-
tion in magnitude. Fig. 1 also shows the variation of Gaussian
and Categorical MUE as a function of the IOU threshold used
to determine what counts as a true positive detection. It can
be seen that both types of MUE have low sensitivity to the
actual value of the IOU threshold.
Probability Based Detection Quality: For controlled test-
ing of our proposed modifications of PDQ, we randomly
generate 8000 true and false positives in a 1:1 ratio. Both
true and false positives are copies of the ground truth, with
true positives having a 1 IOU and false positives having 0
IOU. For true positives, we attach a 1.0 category score and
an isotropic covariance matrix with a scalar value of 0.1 for
the diagonal elements.

Fig. 2 shows the variation of the label quality as a function
of the category score assigned to false positives for both the
original PDQ and PDQ using our proposed modifications.
It can be seen that as the false positive category score
increases, the label quality decreases to a minimum of 0.5
at 1.0 category score. On the other hand, the label quality
of the original PDQ remains constant at 1.0 regardless of
the category score assigned to false positives. Similarly,
the variation of the spatial quality as a function of the
scalar value of the isotropic covariance matrix associated
with false positives is shown in Fig. 2. As the scalar value
increases, the spatial probability mass assigned to the false
positives decrease and the spatial quality of PDQ using our

Fig. 2. Variation in modified and original forms of label and spatial quality
as a function of the probability mass assigned to false positive detections.
Both plots were generated from simulated detections.

Method PDQ Calculation mAP(%) PDQ Score(%) Spatial Quality Label Quality

BayesOD Original 34.77 22.64 0.373 0.644
Modified 34.77 26.85 0.310 0.554

Black Box Original 33.71 21.87 0.408 0.6978
Modified 33.71 22.13 0.318 0.596

TABLE I
COMPARISON BETWEEN THE ORIGINAL PDQ AND PDQ USING OUR

PROPOSED MODIFICATIONS, TESTED ON DETECTIONS FROM BAYESOD
AND BLACK BOX ON THE COCO DATASET.

modifications increases. It can be seen that the spatial quality
of the original PDQ remains constant regardless of the value
of the isotropic covariance associated with false positive
detections. The above experiments confirm that unlike the
original formulation of PDQ, our modifications allow PDQ
to take into account the probability mass assigned to the
category and bounding box of false positive detections.

To better show the results of the proposed modifications,
we use both the original and the modified PDQ to evaluate
real probabilistic detections from applying BayesOD [5] and
Black Box [6] to the validation set of the COCO dataset.
Table I shows that using the modified PDQ, the label quality
of both detectors drop by around 13−15%, while their spatial
quality drop by 16%− 22%. This observation demonstrates
that the original PDQ formulation misses a substantial effect
of false positives on the quality of a probabilistic object
detector.

Another observation from Table I is that the modified
PDQ allows detectors to compensate for false positives by
assigning them a lower category or bounding box probability
mass. Being able to utilize such mechanism in a better
manner than Black Box, BayesOD scored 4.72% higher
when using the modified PDQ formulation, but only 0.77%
higher when using the original PDQ formulation as it does
not take into account false positives.

V. CONCLUSION

In this note, we provide a brief comparative study of
common metrics used to evaluate probabilistic object de-
tectors. We also provide a modification for PDQ to take
into account the probability mass assigned by a probabilistic
detector to false positive detections. As a result of this study,
we recommend the research community rely on AP, MUE,
and PDQ jointly for fair evaluation of probabilistic object
detectors.
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