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1. Introduction
This report presents our approach to the 2023 Robotic

Vision Scene Understanding Challenge [6], a major research
area for tasks such as navigation, object recognition, and in-
teraction in robotics. Unlike the 2022 challenge, this year’s
challenge primarily focuses on active and noisy pose estima-
tion scenarios, further complicating the task at hand.

Building on our success with the challenge of last year [1],
we have expanded and adapted our methodology to address
these challenging situations. The backbone of our solution
remains our proven SLAM (simultaneous localization and
mapping) and scene change detection semantic techniques,
refined and extended to meet the unique challenges of this
year.

The following sections describe methodological aspects
and predict future research directions.

2. Methodology
The challenge is executed within a BenchBot simula-

tor [7], posing unique complexities that our methodology
is designed to tackle. Our strategy comprises two principal
components: 3D object/scene change map creation and lo-
calization within noisy dead reckoning robotic systems. The
overall pipeline is shown in Fig. 1.

2.1. 3D Object and Scene Change Map

Building on our previous solution, our strategy for the
current challenge relies on our established 3D semantic map-
ping and scene change detection mechanisms. Instead of
overhauling the entire mapping pipeline, we focused on up-
dating the instance segmentation and 3D object detection
models, which are central to our solution.

Similarly to last year, we use MMDetection [3]. We at-
tempted to transition from QueryInst [5] to Mask2Former [4]
model but did not observe noticeable improvement. On the
contrary, the upgrade led to a degradation in the final OMQ
metrics of the submitted results. Furthermore, there was a
noticeable increase in false positives in the predictions.

Figure 1. Overall pipeline.

We observed minimal improvements when we updated
the FCAF3D [11] detection model to the newer TR3D [12]
model. Despite demonstrating superior metrics in public
benchmarks, these recent state-of-the-art models do not seem
to transfer effectively to the BenchBot simulation system.

2.2. Localization

The main focus of this year’s challenge is to deal with
scenarios where the pose observation obtained through dead-
reckoning is noisy and imperfect, necessitating the computa-
tion of a more accurate localization via SLAM.
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SIFT matches LoFTR matches

Figure 2. Feature matching using SIFT and LoFTR in the apartment 1 4 scene. A case where LoFTR is a better option than SIFT.

SIFT matches LoFTR matches

Figure 3. Feature matching using SIFT and LoFTR in the office 1 5 scene. A case where LoFTR might not have been better than SIFT.
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SIFT matches LoFTR matches

Figure 4. Feature matching using SIFT and LoFTR in the company 4 5 scene. A case where both LoFTR and SIFT fail.

2.2.1 SLAM

Given that the simulation environment provides accurate
camera depths and 2D laser depth measurements around the
robot, we had two options to choose from: vision-based
SLAM or 2D point cloud-based SLAM. We opted for the
latter for several reasons.

Firstly, the challenge requires scene change detection in
an indoor environment over time. Lighting conditions could
shift significantly (e.g., from bright daylight to a dark office
room). When revisiting the scene, obtaining matches be-
tween the two environmental conditions is crucial. We found
that traditional keypoint-based matching using SIFT [9]
struggled to find matches between scenes and often com-
pletely failed. The deep learning-based LoFTR method [14]
sometimes offers better matching but may fail in more dif-
ficult cases. We also tried using adaptive histogram equal-
ization [10] as an attempt to improve matching [13] but did
not observe any improvement. Moreover, based on what we
observed, the LoFTR matching sometimes does not appear
to provide ”pixel-perfect” matches. These observations are
illustrated in Figs. 2 to 4. These matching are performed be-
tween image matches extracted via visual place recognition,
as will be discussed in the next section. In contrast, the 2D
points from the laser scans did not have the visual sensor’s
variations and were more straightforward to localize towards
the previously constructed map.

Secondly, our active exploration method from the previ-

ous year’s solution was based on frontier exploration, which
finds frontiers based on a 2D map constructed using laser
scans. Therefore, constructing a SLAM method that works
in conjunction with the frontier map would be more efficient.

2.2.2 Long-term Visual Localization

In the scene change detection task, relocalizing our robot
towards the previously constructed map (akin to a kidnapped
robot situation) is necessary when the scene changes. We
explored the scan context [8], commonly used in LiDAR
point-cloud loop detection. However, it did not perform well,
likely because of the sparsity of the 2D laser scans.

As an alternative, we then investigated the visual place
recognition method and used CosPlace [2] to find the best
image match. We chose Cosplace because of its ease of
use and availability in the Pytorch hub. We used CosPlace
to compute the image visual descriptor and rank the top
matches from the previously observed scenes. We found that
CosPlace often provided the correct scene match within the
top-k closest matches (Fig. 5). Using the poses of the closest
matches as the initial pose estimates, we use ICP to align
the current scan and compute the point-cloud distances with
the previously constructed map. We then choose the pose
that yields the smallest average point distances. However,
sometimes even the closest matches extracted by CosPlace
are not entirely correct, leading to a situation where the
minimum distances of the aligned scans remain large. In
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query image top-3 matches

(a) apartment 1 4

(b) office 1 5

(b) company 4 5

Figure 5. Visual place recognition using CosPlace. The left image is
the query image, and the right images are the top 3 matches extracted by
CosPlace.

these cases, we extract the next-closest images ranked by
CosPlace until we find a pose with the aligned point distances
below our predetermined threshold. Of course, we could
also estimate the poses using vision-based feature matching.
But, as observed in the previous section, it is not robust even

with a state-of-the-art method like LoFTR.
After relocalizing our pose in the new scene, we can con-

tinue and use ICP to localize our robot within the previously
constructed point cloud map. This efficient yet effective ap-
proach allows us to navigate through noisy pose estimation
scenarios effectively.

3. Discussion
3.1. Current Limitations

Several limitations must be acknowledged in our RVSU
challenge submission. Our solution is heavily based on
the effectiveness of instance segmentation and 3D object
detection models, which are the key components of our
approach. Our attempts to upgrade these models to the
latest state-of-the-art versions did not yield the expected
improvements, leading us to surmise that these models may
not transfer well to the BenchBot simulation environment.

Our localization system’s performance relies on accurate
2D laser scans as well as visual place recognition to extract
correct scene matches successfully. But the complexity of
the scenario, especially in larger scenes, may sometimes
result in suboptimal matches.

In addition, the components of the methodology, i.e. se-
mantic map, localization, and active planning, all act inde-
pendently. Integrating all these methods into a single frame-
work could potentially result in a more optimal solution.
These observations present areas for potential refinement.
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