Robotic Vision Scene Understanding Challenge: MSCLab Report

Antyanta Bangunharcana

Soohyun Kim

Kyung-Soo Kim

Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

{antabangun, soohyun, kyungsookim}@kaist.ac.kr

In this report, we describe our method that is based on a
combination of existing works to construct a semantic map
within a BenchBot simulator. The core of this challenge is to
build a semantic map and detect changes in the scene, using
the images captured by the robot that can be actively given
the action commands to move around the environment.

1. Semantic SLAM

Figure 1. Updating the bounding box of matched table instance.

In the semantic SLAM part of the challenge, our objec-
tive is to build a tight-fit bounding box for every detected
instance of interest. For this purpose, we define the following
dictionary of map variables to represent mapped objects.

1. instances: this variable stores information for each de-
tected instance. The information stored are the current
centroid and extent estimates, and the corresponding
class ID

2. voxels: When an instance is detected and projected
onto 3D, we register the voxels corresponding to the
said instance. Each voxel stores information on its 3D
coordinates, the number of counts an instance is regis-
tered onto said voxel, and the prediction confidence. In
our implementation, we set the resolution of the voxels
at 2.5cm to limit the memory and computation time.

Given the input RGB and Depth images at each timestep,
we first pass the RGB-D point cloud into a 3D detector
FCAF3D [3]. This gives as the 3D bounding boxes of objects

covered by this model. However, the object classes covered
by this model don’t include all of the classes of interest
in this challenge. So we additionally extract the instance
segmentation on the image using QuerylInst [2]] using the
MMDetection implementation [[1]]. We chose this method as
it gives a good balance between accuracy and speed. The
points for the detected instances are then reprojected onto
3D and registered to a voxel in 3D, along with the prediction
confidence.

For the instances with a corresponding detection from
FCAF3D, we simply associate the corresponding 3D bound-
ing boxes. While for the instances without any correspond-
ing 3D prediction, we fit a tight box from a set of predefined
anchor boxes. The anchor boxes are chosen based on com-
mon knowledge of the approximate sizes of objects. The
use of anchor boxes helps to build a better bounding box
when the instances are only partially visible. During fit-
ting, we also scale and shift the anchor boxes, similar to an
anchor-based object detector.

After we compute the instances’ voxels and the 3D bound-
ing boxes, we try to match them with previously detected
instances. If the number of intersecting voxels or the loU
of the boxes passes a certain set threshold, then the objects
are matched. When the objects are not matched, they are
simply registered as a newly detected instance in the dic-
tionary. When the objects are matched, we compute the
combined bounding box and add it as another anchor box of
that instance. Then we compute a new tight fit box for that
instance. Figure [T]illustrates this procedure. The confidence
of the matched instances is then updated accordingly. This
procedure is repeated at every timestep to iteratively update
the map. At the end of the run, only objects with confidence
higher than 0.9 are considered.

1.1. Current Limitations

In this current implementation, the method is based on
rule-based logic by combining multiple existing methods.
As such, some scenarios are still unaccounted for. Here,
we report some limitations that we encounter in our
experiments, which are also illustrated in Figure 2]



Figure 2. Current limitations of this submission.

1. Object reflections are detected as real objects and reg-
istered as 3D objects, as shown by the red arrow.

2. The 3D bounding box for partially occluded objects
may not cover the unseen parts of the object, as shown
by the yellow arrow. The use of anchor boxes partially
resolves this.

3. However, sometimes the anchor boxes don’t cover the
whole of the detected objects, as shown by the blue
arrow, with the 3D box covering only the top part of
the potted plant.

4. Objects which are out of the training distributions may
not be detected like the low tables indicated by the
green arrows.

5. In addition, we have not implemented any method to
remove false positives from detection.

2. Scene Change Detection

To perform the scene change detection, we add additional
information into the instances variable, namely the scene ID.
It registers the ID of the scene in which it was detected when
it is detected. Then at the end of the run, this information is
used to determine any newly added or removed objects.

3. Active actuation

In the active actuation phase, we base our method on the
frontier exploration approach [4]. We use the 2D LiDAR
data to build a birds eye view map of the environment. At
each time step, we mapped only the free space and obstacles
that are in front of the object within a range of 6m to repre-
sent scene areas that are observed by the camera. However,
we also observe that the 2D LiDAR sometimes does not
represent some of the surrounding obstacles. So we also
use the point cloud from the RGB-D image that is between
0.2 ~ 1.2m in height to build the BEV map.

Using the constructed BEV map, we can then compute
the frontier areas that are not yet observed. A frontier point is

Figure 3. Matched table .

then chosen based on the distance from the current position.
Then A-star algorithm is used to find a path towards this
target while avoiding the mapped obstacle. If A-star cannot
find a path towards this point, then we delete this frontier
point and compute a new one. We then use the computed
path to input an action command for the robot to follow
this path. Once the robot reaches the target frontier point,
we input an action for the robot to rotate 45deg 7 times to
map the surrounding 360deg scene around the frontier point.
Then the process is repeated until no frontier point is left or
the timesteps exceed 300.

References

[1] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong,
Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu,
Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng,
Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai,
Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change
Loy, and Dahua Lin. MMDetection: Open mmlab detection
toolbox and benchmark. arXiv preprint arXiv:1906.07155,
2019.

[2] Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen
Fang, Ying Shan, Bin Feng, and Wenyu Liu. Instances as
queries. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6910-6919, 2021.



(3]

(4]

Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Fcaf3d: Fully convolutional anchor-free 3d object detection.
arXiv preprint arXiv:2112.00322, 2021.

Brian Yamauchi. A frontier-based approach for autonomous ex-
ploration. In Proceedings 1997 IEEE International Symposium
on Computational Intelligence in Robotics and Automation
CIRA’97. Towards New Computational Principles for Robotics
and Automation’, pages 146-151. IEEE, 1997.



	. Semantic SLAM
	. Current Limitations

	. Scene Change Detection
	. Active actuation

