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Abstract

This paper describes a novel approach to probabilistic
object detection using ensemble techniques. The approach
synthesises results from multiple non-probablistic object de-
tectors to acquire final detections. We achieve this by a
two-staged ensembling pipeline: (i) identifying detections
that are of the same object based on the Intersection over
Union (IoU) and labels utilising a greedy assignment pro-
cess; (ii) creating an ensemble of the detections using a
non-suppression algorithm. We employ fixed proportional
and label confidence based covariances to capture the spa-
tial uncertainty with particular calibrations on edging ob-
jects, a special yet common class of detections. The pro-
posed approach achieved 3rd place in the leaderboard of
CVPR-2019 ACRV Robotic Vision Challenge on Probablis-
tic Object Detection.

1. Introduction
Object detection has been an important scene under-

standing task for research in robotics and computer vision.
Such a task aims at entitling robotic or autonomous sys-
tems to the ability to recognise and localise objects in the
environment where they are operated in. The current state-
of-the-art work approaches object detection problems by
predicting positions of bounding boxes [7, 5, 4] or poly-
topes [13] that enclose the object along with a class label
describing what the object is. Additionally, a score is usu-
ally computed to show the confidence over the object posi-
tioning and/or classification result.

In spirit of object detection, the task of probabilistic
object detection (POD) [3] features a novel finer-grained,
pixel-level measure for object localisation, which jointly
with the label confidence measure establishes a new evalu-
ation scheme for object detection, called Probability-based
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Detection Quality (PDQ). Compared with existing average
precision (AP) based metrics, PDQ takes a probabilistic per-
spective and rewards object detectors that better quantify
the spatial and semantic uncertainties of detections. Such
an extension may facilitate the development of robotic sys-
tems that operate interactively with human and environment
by providing trustworthy detections.

The ACRV Robotic Vision Challenge 1 [10] provides
a POD task on a dataset resembling domestic scenes, e.g.
garage, office, bedroom. This is particularly intriguing not
only because the problem of estimating spatial and seman-
tics uncertainties is unexplored per se, but also due to the
vastly different scenes from most existing object detection
datasets [2, 9, 5]. This variation in scenes poses a chal-
lenge for the generalisation ability of object detectors tested
on other datasets. In fact, we found that models can be-
have differently on the new dataset, which leads us to an
ensemble method. Ensemble models are among the most
widely used techniques in deep learning [6, 14]. Their
popularity is mainly attributed to the better predictive per-
formance compared with constituent algorithms. Despite
its wide application, proper ensemble strategies are task-
dependent. Namely, one needs to carefully design the en-
semble schemes such as to exploit the strengths of different
algorithms and use them to compensate for rather than in-
terfere with each other.

The main components of our method is in threefold:

• we present a non-suppression ensemble scheme, which
enhances the performance of object detection systems;

• we estimate the spatial uncertainties of the object de-
tection using covariances that are proportional to the
scale of the detection.

• we apply further calibrations on edging detections to
refine the spatial uncertainty estimation.

The rest of the paper is organised as follows. We intro-
duce the methods in Section 2. In Section 3, we report and
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analyse the experiment results. We conclude our work and
discuss possible further works at the end.

2. Our approach

In this section, we describe the major components that
consist of our ensemble framework. We start by explaining
the data pre-processing and test-time augmentation steps in
Section 2.1. Then we introduce a method to create an en-
semble of detections in Section 2.2-2.3. Lastly, we describe
our several attempts to express spatial uncertainties in Sec-
tion 2.3. An overview of our framework is demonstrated in
Fig. 2.

2.1. Data Preprocessing

Our pre-processing and data augmentation steps are de-
tailed as follows.

• Standardize image The ACRV challenge dataset is
generated spanning a number of different environ-
ments and time. This type of change in the context of
image background is diverse and less targeted in other
object detection datasets, such as MS-COCO, where
the data collection process implicitly constrained the
spectrum of image sources. In Figure 1, we show an
image on the validation set. It can be seen that the
scene is captured in a fairly weak illumination condi-
tion, which makes it hard to recognise objects even for
humans. We apply the image enhancement method in-
troduced in [11] on both validation and test set to cope
with it. An image is enhanced if its average grayscale
is below a predefined threshold.

• Data Augmentation As suggested by multiple exist-
ing work [4] to alleviate the limitations in data exam-
ples, we adopt the data augmentation technique. Due
to speed consideration, we applied all images through
a fixed data augmentation process and saved the re-
sults for fine-tuning and inference job later. Particu-
larly, horizontally flip and random crop augmentation
are integrated.

Figure 1. Example of processed images. Left: original image,
Right: enhanced image.

2.2. First level models

The first part of the detection framework are the base
models, which form the foundation of our ensemble based
approach. To obtain a diversified spectrum of prediction re-
sults, we experimented with a couple of existing models of
various categories, e.g. single staged/two-staged, anchor-
based/anchor-free models. Each model is initialised with
the weights pretrained on the MS-COCO dataset. They
are evaluated on the validation set of ACRV challenge with
fixed covariances 35. We summarise the best five models
selected for ensemble in Table 1.

Model TP FP FN
Spatial
quality

PDQ
score

MaskRCNN [4] 29786 16808 60447 0.40 15.73
YOLOv3 [8] 10114 594 80119 0.51 7.65
RetinaNet [5] 15847 3681 74386 0.46 9.25
M2Det [12] 19432 6109 70801 0.47 12.27
ExtremeNet [13] 21676 5862 68557 0.46 11.78

Table 1. Performance of pretrained models on validation set.

Although bearing the variations between COCO and
ACRV datasets, our preliminary study shows that for posi-
tive instances, the positioning of predicted bounding boxes
is still satisfactory. Therefore, selected models are further
fine-tuned but only for class label prediction on the provided
validation data of ACRV challenge. We test two versions of
each model, fine-tuned and only pre-trained respectively, in
the ensemble process.

2.3. Staged Non-suppression Ensembling

In this section, we present the non-suppression ensem-
ble (NSE) method we use in the challenge. The main driven
force for us to resort to the ensemble method is the observa-
tion that detection performance for different object classes
differs on methods. For example, YOLO [7] achieves a bet-
ter recall score than RetinaNet [5] on the “wine glass” class
while RetinaNet performs better on “sink” and “clock”. The
proposed method constitutes two stages: duplicates match-
ing and non-suppression merging, as we will explain next.

Duplicates Matching When multiple algorithms succeed
on detecting the same object, the duplicates must be handled
to avoid false positive detections. To this end, a prelimi-
nary procedure is required to identify such possible dupli-
cates. We notice that when evaluating the performance of
object detection systems, algorithms are utilised to match
the detection-object pair [2]. We extend this idea for our
purpose. Specifically, we iterate over detections from each
model and group detections that (i) share the same class la-
bel; and (ii) overlap heavily with each other, determined by
a predefined IoU threshold. We then assign detections in
each group to the same object. We remark that our match-
ing strategy is greedy with respect to IoU scores rather PDQ
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Figure 2. Overview of the detection framework

scores. Adopting an optimal assignment procedure based
on PDQ scores may help to identify better matches.

Non-suppression Merging For standalone detections that
are not grouped, we straightforwardly add them to the en-
semble. For the grouped detections, we expect a procedure
that reduces the group to a single detection. A relevant prob-
lem setup is a common post-processing step in object de-
tection methods, where Non-maximum Suppression or its
variant [1] is required to remove ROIs that overlap signif-
icantly with the most confident box. This is, however, not
aligned with our aim to calibrate the detection taking the
most advantage of results from multiple models. On the
other side, eliminating low-confidence detections can also
be achieved by thresholding the detectors before ensem-
bling. We therefore proceed in the opposite direction and
keep all the results without suppression. Then we average
over the group of detections to acquire the synthesised de-
tection box. Extending non-suppression merging by apply-
ing weighting terms to reward/penalise different detections
is also possible. We briefly outline the ensemble method
in Algorithm 1. We iterate over detections from different
methods (line 3-7) and find matching detections based on
iou scores. Line 8-10 averages over detections to create the
final ensemble.

2.4. Handling Spatial Uncertainties

Whereas the current model can recognise objects with
satisfying accuracy, the PDQ score adopted for this chal-
lenge also measures the quality of generated bounding box.
Apart from directly improving the bounding box prediction,
PDQ penalises incorrect positioning with low spatial uncer-
tainty. More precisely, POD algorithms are required to pro-

Algorithm 1: Staged Non-Suppression Ensemble
(NSE)

Result: D̂: ensemble detections
1 D ← {d1, d2, ..., dn} // di: detections from ith method

2 M ← emptyDict(); D̂ ← emptyList()
3 for i← 0 to |D| do
4 for j ← i+ 1 to |D| do
5 M ← find match(di, dj , M)
6 end
7 end
8 foreach m ∈M do
9 D̂.append( 1

m

∑i<|m|
i=0 mi)

10 end

1 Procedure find match(d, d′, M)
2 for i← 0 to |d| do
3 sort d′ on iou with di
4 for j ← 0 to |d′| do
5 if iou(di, dj) > εiou and

di.label = dj .label then
6 M [di]←M [di].append(dj)

7 end
8 end

vide a covariance value at each side of the bounding box to
generate a probability heatmap (a.k.a probabilistic bound-
ing box). We summarise the two approaches tested for pre-
dicting these covariance values.

• Proportional covariances Since the PDQ score mea-
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Figure 3. Improvement of detections from ensemble method.

sures spatial uncertainties in pixel, detections on large
objects intuitively are more likely to contribute to in-
accurate positioning. Therefore, we multiply the scale
of detections by a predefined proportion, which serve
as the standard deviation of the Gaussian distribution.
We also assume that there is no correlation between the
horizontal and vertical positions of an object and there-
fore assign covariances matrices as diagonal ones. We
observed that a proportion of around 6% gives the best
spatial score on the dataset.

• Confidence based covariances When models are eval-
uated on the validation set, given each pair of ground
truth bounding box and the predicted one, the optimal
covariance matrix that maximizes the PDQ score ex-
ists. However, finding the exact optimal solution can
be computationally heavy. In our experiment, we ap-
proximate it by the following heuristic method. Denote
the ground truth bounding box and the predicted one as
BBoxgt = (x, y, x̄, ȳ) and BBoxpred = (x′, y′, x̄′, ȳ′),
respectively, the approximated optimal covariance ma-
trix Cov = [Cov1,Cov2] is computed as:

Cov1 =
1

52

[
(x− x′)2 0

0 (y − y′)2
]

Cov2 =
1

52

[
(x̄− x̄′)2 0

0 (ȳ − ȳ′)2
]

The intuition behind it is to increase the overlap be-
tween the probabilistic bounding box with the ground
truth one. We then examine these approximated Cov
on all detections on the validation set, and find their
empirical estimation of distribution for each element
in the major diagonal and by each class, denoted as
Covi,j

cls ∼ D(µi,j
cls,Vari,jcls).

Without explicit confidence score for predicted boxes
from the model, we use the confidence score of the

label instead. Now given a new prediction with label
score Pl, the predicted Cov is as:

Covi,j = µi,j
cls + α(1− Pl) ·

√
Vari,jcls

where α is the hyper-parameter to control the effect
from variance.

Initial validation results show better performance from
comparatively simple proportional covariance and is thus
the only adopted and tested into our submission due to lim-
ited testing opportunities. We attribute the less satisfying re-
sult from confidence based covariances to insufficient fine-
tuning work on the control factor α.

2.5. Edging Object

When the bounding box is predicted to be close to the
image border, we notice that the model become less reliable
in distinguishing the case of partial observation (part of ob-
ject lays outside of view) and actual objects sitting next to
the border. Intuitively, if an object is found likely to be a
partial match, we can safely raise the confidence of its pre-
dicted bounding box on the side next to the image border.

We find all predictions if any side of the bounding box
is only 0 to 2 pixels away from the image border, and fil-
ter off all the small detections (heuristic measurement for
small objects which are unlikely to form a partial match).
For those remaining, instead of reducing theCov to 0 that is
prone to over-confidence, we use a compromised approach
that refines the box to be 1 pixel away from the border and
attach a comparatively small Cov to it. Our experiment
shows that this fix brings an consistent increase of about
0.5 to the overall PDQ score.

3. Results
We validate the effectiveness of proposed ensemble

method on validation set and the result can be found in Fig-
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Model Split TP FP FN Spatial quality PDQ score
NSE+fixed cov=35 Val. 36373 26164 53866 0.43 19.22
NSE+prop. cov=6% Val. 35940 26775 54293 0.46 19.43
NSE+prop. cov=6%+edg Val. 35881 26848 54352 0.49 19.86
NSE+prop. cov=6%+edg Test 118678 91735 177689 0.50 20.02

Table 2. Performance of methods on validation and test sets. We use “fixed cov” to denote the setting where the covariance matrices are
diagonal matrices with fixed values on corners; “edg” to denote the fix on edging objects.

ure 3. The green part of the bar plot indicates the number
of correctly matched object by using only the base model
(MaskRCNN) and the red part indicates the additional cor-
rect detections from ensemble. The ensemble method man-
ages to properly integrate the diverse output from our first
level models, resulting improvement in the detection recall
on both major and minor classes.

The final result on the public validation set and private
testing set is summarised in Table 2. From the table, we
have the following observations.

• NSE significantly improves the PDQ score compared
with single-model methods in Table 1. This suggests
that the ensemble scheme we propose succeeds on
combining true positive instances while properly con-
trolling the number of false negative instances.

• Proportional covariances and the fixes on the edging
objects both contribute to improve spatial quality. It is
also noticeable that TP decreases in this case, which
is sensible as a more compact spatial estimation may
risk losing true detection-object matchings. However,
the overall PDQ score still arises, which justifies the
effectiveness of the methods.

• PDQ scores on the test set is marginally higher than the
validation set. This is not too surprising as the ACRV
dataset exhibits dramatically different scenes and ob-
ject distributions on the validation and test sets. Al-
though tuning on validation helps us to get a better
sense of the influence of parameters, there is barely
direct causal relation between the results on the two
sets.

4. Conclusion

In this paper we describe the approach we use in our sub-
mission to ACRV Robotic Vision Challenge 1. We propose
non-suppression ensembling to integrate multiple base non-
probabilistic models to improve the diversity of model pre-
diction. Investigation has also been made to precisely cali-
brate the uncertainty in the bounding box. As a result, we
are able to address some of the new challenges introduced
by this competition and achieve promising results in the fi-
nal leaderboard.

As for the future, improvements can be made to the per-
formance of base models by integrating the temporal infor-
mation implied in the sequential data. We also envision to
formulate the measurement of probabilistic bounding box
into a learning problem so that the model can be trained to
predict it.
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