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Abstract

The Probability Object Detection (POD) aims to mea-
sure spatial and label uncertainty of an object detector.
The uncertainty measurement is important in robotic ap-
plications where actions triggered by erroneous but high-
confidence perception can lead to catastrophic results. In
this work, we propose the AugPOD, which augments the
state-of-the-art models using several approaches, including
i) MC Dropout ii) Gamma Correction iii) Virtual Dataset
Collection. The experimental studies demonstrate that our
method outperforms all the models involved in the competi-
tion with the score of 22.563, which is 2.72 times improve-
ment on the original Mask R-CNN.

1. Introduction

Robotic Vision is an essential technology to equip robots
with higher functionality. The surrounding information in
various application fields, such as a factory or household,
can provide robots the important clues to complete their
tasks more accurately and efficiently. With the recent suc-
cess of deep neural networks, lots of works applied Object
Detection algorithm on Robotic Vision. Even though the
Object Detection model could achieve high Average Preci-
sion (AP) on several datasets, such as MS COCO [7] and
Pascal VOC [4], it may still encounter many failure cases
in the real-world scenarios. Besides, robot vision systems
also need to generalize well in various environments under
different brightness and surrounding conditions.

The Probabilistic Object Detection Challenge [12] pro-
posed a new metric and dataset which corresponded to pre-
vious problems. Compared with the standard AP-based
measures, the Probability-based Detection Quality (PDQ)
score [5] measures the spatial and label uncertainty. Be-
sides, the dataset contains a wide variety of brightness and
different surrounding conditions.

In this work, we present AugPOD that consists of 3
different techniques to address previously mentioned is-
sues. Based on Probabilistic Object Detection, we apply
MC Dropout [9] on different detection models, including
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Faster R-CNN [11], Mask R-CNN [6], Cascade Mask R-
CNN [3] and Hybrid Task Cascade [3] to measure uncer-
tainty of bounding box. For the generalization, we apply
gamma correction, and data augmentation to deal with the
large variation of brightness in day and night. Besides, we
also collected our virtual dataset based on Unreal CV Engine
[10] to increase the richness of surrounding conditions.

As a result, we demonstrate that the AugPOD achieves
the score of 22.563, which is the top-1 rank in the competi-
tion and improves the original Mask R-CNN by the magni-
tude of 2.72.

2. Methods

In this section, we described the method we used for the
Robotic Vision Challenge[ ! 2]. It’s divided into four subsec-
tions: Detection Model, Gamma Correction, Monte Carlo
Dropout Estimation, and External Data Collection.

2.1. Detection Model

For the task of object detection, there are two types of
frameworks, including the single-stage detectors and multi-
stage detectors. Although the inference speed of multi-stage
detectors is much slower than single-stage detectors, they
often achieve higher accuracy than the others. Moreover,
some works leverage segmentation information to improve
the performance of object detection. According to previous
observations, we chose the following four models. The first
one is Faster R-CNN [11], the model regress the bound-
ing boxes of objects by Region Proposal Network and ROI
pooling. The second one is Mask R-CNN [6], they pro-
posed ROI Align and the mechanism of estimating segmen-
tation and bounding boxes simultaneously to get better per-
formance. The third is Cascade Mask R-CNN [3] which is
based on the idea of the work [1]. It cascades three modules
after the original Mask R-CNN, including feature extrac-
tion, bounding box regression, and classification. The last
one is the Hybrid Task Cascade [3] model, it interleaves
bounding box regression and mask estimation, fusing ad-
ditional semantic information to bounding box branch and
mask branches. We made use of the above models in our
experiment section.



Figure 1. Examples of gamma correction processing. The original
images are listed in the first row and the images applying gamma
correction are listed in the second row.

2.2. Gamma Correction

After inspecting the data set, we found the brightness of
images is diverse, which causes object detection to fail. It’s
because half of the images in validation and testing sets are
collected in the night time scene. In contrast, the images
in MS COCO Dataset [7] are mostly captured in a bright
condition. One way to solve this problem is augmenting
randomized brightness data during training. However, it’s
still hard for a model to learn a large difference in the dis-
tribution of object appearance. The other way is to increase
the brightness of the testing images. Gamma correction is
a nonlinear operation to increase the value of each pixel,
defined by the following formula.

Vour = AV}, (D

where V;,, and V,,,,; are the input image and the correspond-
ing output result. A and ~y are tuning parameters. To pre-

vent the over bright results after applying gamma correc-
tion, we used the following procedure. First, the input im-
age is transformed from RGB format to HSV format, and
then we average image pixel values in the V channel. Sec-
ond, if the average of V is smaller than d, the image will
be enhanced by above formula 1 of gamma correction. We
combined both of data augmentation and gamma correction
procedure in our final result. Here we set A = 1,y = 0.4
and § = 60. Figure. | displays the enhanced results after
applying gamma correction procedure.

2.3. Monte Carlo Dropout Estimation

For Probabilistic Object Detection, it’s crucial to es-
timate the probability distribution of predicted bounding
boxes. In the work [5], they presented a bounding box by
B = (N(], Nl) = (N(M()7 Z())), N(,Uq, 21)), where i and
>; are the mean and covariances for the multivariate Gaus-
sian describing the top-left and bottom-right corners of the
box. However, most of the current popular Object Detec-
tion methods are for non-probabilistic, such as Faster R-
CNN [11], Mask R-CNN [6], Cascade R-CNN [1] and Hy-
brid Task Cascade [3]. A straightforward way is applying

Figure 2. The left image is the output of MC Dropout on Mask R-
CNN before clustering. The right image is the result of bounding
boxes after applying the algorithm 1 on Mask R-CNN.

fixed covariance estimation to the corners predicted by one
of the previous methods. However, using fixed covariances
is unrealistic for model generalization and cross-domain
evaluation. Instead, Monte Carlo (MC) Dropout SSD [9]
compared different merging strategies to measure the un-
certainty of Object Detection model (SSD). Based on one
of their clustering methods called Basic Sequential Algo-
rithmic Scheme (BSAS), we modified it and employed the
following algorithm 1. Here we set K = 20, o = 0.75 and
B = 0.005. Figure. 2 displays an example after applying the
algorithm 1 on Mask R-CNN.

2.4. External Data Collection

Since this challenge[!12] didn’t provide any training
data, and there is no restriction on external data usage,
we collected an external virtual dataset based on Unre-
alCV Engine [10]. We build the indoor scene with the
existing environment and 30 sub-classes of MS COCO [7]
categories. Following the varied camera height settings
in the dataset of this challenge[12], we collected our
own training data with three different heights including
tall, medium and short viewpoints. The examples of
our external data are shown in Figure. 4. Our dataset
includes 10K images with the ground truth of object
detection and segmentation mask, which is available at:
https://drive.google.com/drive/folders/
13GBbYsSEXu3SOAjJVMvVEUXK7_xxAvzSOuB.

3. Experiments

3.1. Dataset and Metric

Here we use the MS COCO Dataset [7], validation set
provided by the organizer of CVPR 2019 The Probabilistic
Object Detection Challenge [12], and the external dataset
mentioned in the section. 2.4. The evaluation metric is
following Probability-based Detection Quality (PDQ) score
[5]. The PDQ score contains spatial quality and labels qual-
ity to accurately estimated spatial and label uncertainties.

3.2. Implementation Details

The Faster R-CNN [11] and Mask R-CNN [6] models
are modified from this code [8], and the Cascade Mask R-
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Algorithm 1 Framework of MC Dropout Object Detection

1: K = Sampling times

2: I = Input image

3: C' = Clusters of bounding boxes

4: 0 = The weight of detection bounding box head

5. for each k € [0, K] do

6: 0 = Dropout(0, probabilty = 0.5);

7: Dy, = Detection(I,0);

8: for each d; € Dj. do

9: for each ¢c; € C' do

10: if Cls(d;) = Cls(cj) and IoU(d;, c;) >
0.5 then d; joins c;;

11: else d; becomes new cluster and joins C';

12: end if

13: end for

14: end for

15: end for

16: Preds = ||

17: for each ¢; € C do
18: if Number(c;) > K x o then

19: w= Mean(c;)

20: cov = Covariance(c;);

21: normcov = NormalizeCovariance(c;);
22: if normcov < (3 then

23: Append {(p, cov, Cls(c¢;)} into Preds
24: end if

25: end if

26: end for

27: return Preds

CNN [3] and Hybrid Task Cascade [3] models are modified
from this code [2]. We replaced the dimension of 80 cat-
egories with the new 30 ones on the last fully connected
layer. The model was trained on single NVIDIA GeForce
GTX 1080Ti with batch size of 2 and a learning rate of
0.001 which is decreased by 10 at the 140K iterations. And
we adopted a weight decay of 0.0001 and momentum of
0.9. Besides, we joined MS COCO Dataset[7] and our own
dataset, and applied data augmentation during the training
process, including Gaussian noise and brightness. During
inference, we set the confidence threshold at 0.3. If the pre-
dicted probability is greater than the confidence threshold,
the output probability will be set to 1.0 for increasing label
quality score.

3.3. Ablation Study
3.3.1 Detection Model

As shown in Table. 1, we compared four popular object de-
tection models on validation set provided by the challenge
organizer. All of them are pre-trained on MS COCO [7]
without any fine-tuning and without covariance matrix. We
found that the trend of the performance on the validation

set is similar to the trend of the performance on MS COCO
Dataset[7]. The state-of-the-art Hybrid Task Cascade [3]
with Deformable Convolution Network as backbone still
outperforms other models. But as mentioned in Hybrid Task
Cascade [3] paper, they use 16 GPUs and train 20 epochs.
Due to limited time and resource, we choose Mask R-CNN
to be our final result.

3.3.2 Gamma Correction

To evaluate the effect of gamma correction procedure men-
tioned in previous section 2.2, we compared Cascade Mask
R-CNN [3] and Hybrid Task Cascade [3] on the validation
set without fine-tuning and using zero covariance matrix.
The results are shown in Table. 2. After applying gamma
correction procedure, there is significant performance gain
on both of two models.

3.3.3 MC Dropout

We compared Mask R-CNN on the validation set by 3 dif-
ferent covariance matrix settings, including without covari-
ance matrix, fixed covariance matrix and MC Dropout[9].
First, the fixed covariance matrix greatly improves the over-
all score and provides nearly twice the Average Spatial
Quality compare to the model without it. Unfortunately, it is
hard to manually search for the best covariance matrix. So,
we applied MC Dropout[9] procedure mentioned in section
1. As a result, MC Dropout provides a significant perfor-
mance gain without manually hyperparameter search. The
results are shown in Table. 3. However, the main drawback
of MC Dropout is that the computation time will increase
dramatically, as sampling times increase.

3.4. Final Results

Table. 4 is the highest scores in our submissions. Aug-
POD is based on Mask R-CNN [6] architecture jointly
trained 87, 500 steps on MS COCO Dataset[7] and our vir-
tual dataset, then inference on the testing set with gamma
correction procedure. The final score is 22.56. Due to lim-
ited time, our final results do not apply MC Dropout[?], but
using fixed covariance matrix.

4. Conclusion

In summary, we presented AugPOD with MC Dropout,
Gamma Correction and Virtual Dataset collection on the
several object detection models in the Probabilistic Object
Detection Challenge. Our AugPOD is successful to mea-
sure the uncertainty of object bounding box and generalize
in a large variation of environment.

In order to teach robots to better estimate spatial and se-
mantic uncertainty, our future work will focus on the object-
level SLAM to establish 3D map and locating the position
of objects for further manipulation tasks.



Model Score | Avg. Overall Quality | Avg. Spatial Quality | Avg. Label Quality | COCO AP.
Faster R-CNN [11] 5479 | 0.281 0.160 1.000 41.2%
Mask R-CNN [6] 6.056 | 0.268 0.148 1.000 42.2%
Cascade Mask R-CNN [3] | 9.007 | 0.357 0.234 1.000 45.7%
Hybrid Task Cascade [3] 10.247 | 0.370 0.246 1.000 50.7%

Table 1. The validation results of different Detection Models which are pre-trained on MS COCO without fine-tuning and covariance

matrix.
Model Gamma | Score | Avg. Overall Quality | Avg. Spatial Quality | Avg. Label Quality
Cascade Mask R-CNN [3] | X 9.007 | 0.357 0.234 1.000
v 10.698 | 0.380 0.255 1.000
Hybrid Task Cascade [3] X 10.247 | 0.370 0.246 1.000
v 10918 | 0.390 0.263 1.000

Table 2. The validation results of applying gamma correction on Cascade Mask R-CNN and Hybrid Task Cascade which are pre-trained
on MS COCO without fine-tuning and covariance matrix.

Model Score | Avg. Overall Quality | Avg. Spatial Quality | Avg. Label Quality
Without Covariance Matrix | 8.392 | 0.332 0.213 1.000
Fixed Covariance Matrix 14.787 | 0.545 0.399 1.000
MC Dropout 15.378 | 0.601 0.452 1.000

Table 3. The validation results of Mask R-CNN which are pre-trained on MS COCO and fine-tuned on validation set. Note: Fixed
Covariance Matrix = [[1, 0], [0, 1]]

Model G | ED | Score | Avg.0Q | Avg.SQ || Avg.LQ || TP FP FN
AugPOD | V | V 22.563 | 0.605 0.454 1.000 152967 || 113620 || 143400
Table 4. Our final results on the testing set. Our model applied Gamma correction procedure and trained on our virtual dataset. Due to
limited time, instead of using MC Dropout, we used fixed Covariance Matrix = [[3, 0], [0, 3]]. Legend:X=Not implement, V=Implement,
G=Gamma correction, ED=External data, Avg.0Q=Avg. Overall Quality, Avg.SQ=Avg. Spatial Quality, Avg.LQ=Avg. Label Quality,
TP=True Positives, FP=False Positives, FN=False Negatives

il : |
Figure 4. The left image is the output bounding box of original

Mask R-CNN model. The right image is output bounding box of
our AugPOD model.

Figure 3. The examples of our external dataset. The images are
in the first row and the corresponding ground truth segmentation
masks are in the second row.
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