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Aleatoric and Epistemic Uncertainty

Aleatoric Uncertainty Epistemic Uncertainty
e Due to noise inherent in the observations e Due to lack of knowledge
o E.g. over-exposure, motion blur e Can be reduced by more data.

e Can not be reduced with more data.
e From Latin “alea” = “dice”



Aleatoric Uncertainty




Aleatoric Uncertainty
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What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall and Yarin Gal, NeurlPS 2017.



Epistemic Uncertainty
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http://www.youtube.com/watch?v=EL4_qYRJI2M
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Image credit: Hermann Blum et al.

The Fishyscapes Benchmark: Measuring Blind
Spots in Semantic Segmentation.

Blum, Hermann and Sarlin, Paul-Edouard and

Nieto, Juan and Siegwart, Roland and Cadena,
Cesar.

Prediction

Sidewalk: 78% Human: 71% Street: 96%


https://fishyscapes.com/
https://arxiv.org/pdf/1904.03215.pdf




1000 classes

Shape: (9216,1) Shape: (4096,1) Shape: (1000,1)












The Open-Set Problem

Training under conditions. Deployment under Open-Set conditions.

Carefully curated training (and test) datasets vs. the real world.
Relevant for perception and action.




The Open-Set Problem

Training under conditions. Deployment under Open-Set conditions.

e Distribution of classes, conditions, appearance, imaging conditions (viewpoint,
motion blur, focus, arrangement, ...), noise, system dynamics, ... differs
between training and deployment.




The Open-Set Problem

Training under conditions. Deployment under Open-Set conditions.

e out-of-distribution detection, anomaly detection, novelty detection







Fooling Networks
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Training on ImageNet, confidence > 99.6%

Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images (Nguyen et al., CVPR 2015)



Adversarial Examples

g Sgn(Vad (0. 2.9)  sign(v,J(6,,))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Explaining and Harnessing Adversarial Examples (Goodfellow et al., ICLR 2015)






correctly classified + distortion = “ostrich” correctly classified + distortion = “ostrich”

Intriguing properties of neural networks (Szegedy et al., 2013)



Why should we care about uncertainty?

e Reliability, Safety, Trust
o  Know when the network does not know.
o (and take appropriate action)
e Bayesian Fusion
o Treat deep networks like any other sensor: fuse
predictions with other sensors or prior knowledge
in a Bayesian way.
e Active Learning
o  When uncertain, ask for help!
e Interpretability

o More insights into the training process?

The Limits and Potentials of Deep Learning for Robotics. Sinderhauf,

Upcroft, Abbeel, Burgard, Milford, Corke. I[JRR 2018.

Article

The limits and potentials of deep
learning for robotics

rhauf!, Oliver Brock?, Walter Scheirer®, Raia Hadsell*,
Dieter Fox®, Jiirgen Leitner!, Ben UpcroftS, Pieter Abbeel”,
Wolfram Burgard®, Michael Milford' and Peter Corke'

Abstract

The application of deep learning in robotics leads to very specific problems and research questions that are typically not

7

addressed by the computer vision and machine learning communities. In this paper we discuss a number of robotics-
specific learning, reasoning, and embodiment challenges for deep learning. We explain the need for better evaluation
metrics, highlight the importance and unique challenges for deep robotic learning in simulation, and explore the spectrum

between purely data-driven and model-driven approaches. We hope this paper provides a motivating overview of important

research directions to overcome the current limitations, and helps to fulfill the promising potentials of deep learning in

robotics.
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1. Introduction

A robot is an inherently active agent that interacts with the
real world, and often operates in uncontrolled or detrimental
conditions. Robots have to perceive, decide, plan, and
cute actions, all based on incomplete and uncertain knowl-
edge. Mistakes can lead to potentially catastrophic results
that will not only endanger the success of the robot’s mis-
sion, but can even put human lives at risk, e.g. if the robot
is a driverless car.

The application of deep learning in robotics therefore
motivates research questions that differ from those typically
addressed in computer vision: How much trust can we put
in the predictions of a deep learning system when misclassi-
fications can have catastrophic consequences? How can we
estimate the uncertainty in a deep network’s predictions and
how can we fuse these predictions with prior knowles
other sensors in a probabilistic framework? How well doe:
deep learning perform in realistic unconstrained open-set

narios where objects of unknown class and appearance
are regularly encountered?

If we want to use data-driven learning approaches to gen-
erate motor commands for robots to move and act in the
world, we are faced with additional challen| uestions:
How can we generate enough high-quality training data?
Do we rely on data solely collected on robots in real-world
scenarios or do we require data augmentation through simu-
lation? How can we ensure the learned policies transfer well

to different situations, from simulation to reality, or between
different robots?

This leads to further fundamental questions: How can the
structure, the constraints, and the ph
robotic tasks in the real world be lev

laws that govern

model-driven and data-driven problem solving,
are these rather two ends of a spectrum?
. limits, and
potentials for deep learning in robotics. The invited speak-
ers and © nizers of the workshop on The Limits and

! Australian Centre fo
QUT), Brisbane, Australia
botics and Biolo
an
ing, Uni

Deep! London, UK
*Paul G. Allen School of Computer Sci

4000 QLD, Australia

Brock, Scheirer, Hadsell, Fox, Leitner,
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According to data obtained from the self-driving
system, the system first registered radar and
LIDAR observations of the pedestrian about 6
seconds before impact, when the vehicle was
traveling at 43 mph.

As the vehicle and pedestrian paths converged, the
self-driving system software classified the

pedestrian as an unknown object, as a vehicle,
and then as a bicycle with varying expectations
of future travel path.

At 1.3 seconds before impact, the self-driving
system determined that an emergency braking
maneuver was needed ...






Softmax-based Uncertainty

Baseline (Hendrycks et al., 2016) Softmax
"probabilities”

< 0, uncertain
> , certain

Closed-set Performance Open-set Performance Robotic Vision
(Accuracy, mAP etc.) (Uncertainty) (Object Detection/Instance Segmentation)

Slide courtesy of Dimity Miller
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Confidence = Probability?

Calibration Plot

— VGG-19
Confidence scores —  ResNet-101
ideal curve
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Softmax-based Uncertainty

Out-of-DIstribution detector for Neural networks " Softmax " l 2. Temperature ]
(ODIN) (Liang et al., 2018) probabilities” | Scaling
X 3 T
1. Perturbations I Si(z; T) = Zi 1€ @/ ) 7
to input j=1exp (fj(x)/
. 7 Dog
Cat

< 0, uncertain
> , certain

Closed-set Performance Open-set Performance Robotic Vision
(Accuracy, mAP etc.) (Uncertainty) (Object Detection/Instance Segmentation)

Slide courtesy of Dimity Miller










Distance-based Uncertainty with Cross-Entropy Loss

Multivariate Gaussians and Mahalanobis Distance (Lee et al., 2018)

M(x) = Uncertainty

\—‘ Dog

Cat

Bird

Sheep

Closed-set Performance \T Open-set Performance

(Accuracy, mAP etc.) (Uncertainty)

</

Robotic Vision
(Object Detection/Instance Segmentation)

Slide courtesy of Dimity Miller



Distance-based Uncertainty with Metric Learning Losses

Contrastive Loss (Masana et al., 2018) Gaussian Kernel Loss (Meyer et al., 2019)

-1 i b i ] i : . i 2% .
-0.5 0 0.5 -2 -1 0 1 2

Cross-entropy Loss Contrastive Loss
(softmax CNNSs) (metric learning loss) (Image: Horiguchi et al., 2017)
Closed-set Performance Open-set Performance Robotic Vision
(Accuracy, mAP etc.) (Uncertainty) (Object Detection/Instance Segmentation)

Slide courtesy of Dimity Miller



Uncertainty
Techniques
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Slide courtesy of Dimity Miller




Deep k-Nearest Neighbors

Layer name Neural architecture Representation spaces Nearest neighbors

Softmax @O Panda School Bus Conformal Nonconformal

3rd hidden O O O O
2nd hidden O Q Q Q

1st hidden O 040 Q

L
Inputs %

“Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep
Learning”. Nicolas Papernot and Patrick McDaniel



Evaluating Uncertainty Techniques for Robotic Vision

Low Resolution . Unrealistic Open-set
Non-diverse Datasets ..
Datasets Conditions

Known

Dataset # Classes E
CIFAR-10 10 T
SVHN 10 ﬂﬂ
LSUN 10 CIFAR-10
MNIST 10
Open-set

e M

L ) Mk

Shafaei et al., 2018 .. lz E

SVHN LSUN

Slide courtesy of Dimity Miller



Image credit: Hermann Blum et al.

The Fishyscapes Benchmark: Measuring Blind
Spots in Semantic Segmentation.

Blum, Hermann and Sarlin, Paul-Edouard and

Nieto, Juan and Siegwart, Roland and Cadena,
Cesar.

Prediction

Sidewalk: 78% Human: 71% Street: 96%


https://fishyscapes.com/
https://arxiv.org/pdf/1904.03215.pdf




Bayesian Deep Learning

“Normal” Deep Learning

e CNNis a function f with parameters w training inputs X = {x;,..., Xy}
e f(x) generates labels y outputs Y = {y1,...,yn}
e we seek the optimal parameters w (via y = f¥(x)

stochastic gradient descent etc)

Bayesian Deep Learning
e Use a prior p(w) on the network parameters
e Learning is finding the posterior over parameters p(w|X,Y)
e not just one CNN, but a distribution over CNNs!



Bayesian Deep Learning

Classify a new input image x = inference:

* | <,k | <k aqab/e/

p(y'[x*, X, Y) = [ p(y"[x", w)p(w|X, Y)dw ™

Given the training data XY, and a new image x, ... averaging over the individual predictions of
obtain the distribution over labels y by ... ALL possible network parameters w!

i,,,
(Y[X,w) < ai'a"'e/ Plracy
(Y| X, w)p(w g W/a,
I ing: P(w|X,Y) = Y |X) = Y X wp(w)dw
earning: p(w| ) (Y TX) p(Y|X) /p( X, w)p(w)

We need approximations!




Bayesian Neural Networks

Output @ Posterior Intractable

AT — p(Yzﬁi?T;g(w)
asentarer (] Q OO

\@\

ApproxiBayelBapdiieiNautNetwork

(Image: Blundell et al., 2015)
Slide courtesy of Dimity Miller

Approximate Posterior

[ Variational Inference ]




Bayesian Convolutional Neural Networks

Monte Carlo (MC) Dropout (Gal et al., 2017)

a) Standard Neural Net (b) After applying dropout.

(Image: Srivastava et al., 2014)

Closed-set Performance Open-set Performance Robotic Vision
(Accuracy, mAP etc.) (Uncertainty) (Object Detection/Instance Segmentation)

Slide courtesy of Dimity Miller




Dropout to the Rescue (again)

Dropout: An efficient way to average many large
neural nets (http://arxiv.org/abs/1207.0580)

» Consider a neural net with one hidden
layer.

+ Each time we present a training
example, we randomly omit each

hidden unit with probability 0.5. OR00ORR0

+ So we are randomly sampling from
2"H different architectures.

— All architectures share weights.

Neural Networks for Machine Learning, Geoffrey Hinton on Coursera in 2012

e Dropout as a Bayesian Approximation (Gal and Ghahramani, ICLR 2015)
e Yarin Gal’'s PhD thesis
e NIPS 2016 workshop (www.bayesiandeeplearning.org)



class Net(nn.Module):
def __init__ (self):
super(Net, self).__init_ ()
self.fcl = nn.Linear(2, 64)

COandenCe = PrObablllty? self.fc2 nn.Linear(64, 3)

def forward(self, x):

x = self.fcl(x)
X = nn.functional.relu(x)

Confidence scores x = nn.functional.dropout(x, training=True)
x = self.fc2(x)|

return x




CELICEEEACETEICaaaeeEseeedqaeasee
SENNGERERS RN RN

NIRRT AAEARERSEE
]

8%

AERAERRAAREARORAERADARAS

@
PYLC

4

K

&

sdesa

.
.
.
.
=
.
.
.
-
.
.

saee

wesde

PR E R AN SR AR ER AR E A RERAERTRR TR AR
FATAAREEE

CEAERAAARRARSRASRAS

duscdsnns

SARBAREATRAEN S

cadsnces




Uncertainty from Object Detection

Single Shot MultiBox Detector (SSD)
(Liu et al., 2015)

MC Dropout SSD MC Dropout
(Miller et al., 2018) (Gal et al., 2017)

(Image: Srivastava et al., 2014)

Slide courtesy of Dimity Miller

a) Standard Neural Net (b) After applying dropout.
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Uncertainty from Object Detection

MC Dropout SSD (Dropout Sampling for Robust Object Detection in Open-Set Conditions. Miller et al.,, ICRA 2018)

1. Sample from MC Dropout SSD 2. Group samples into observations

Slide courtesy of Dimity Miller



Uncertainty from Object Detection

MC Dropout SSD (Dropout Sampling for Robust Object Detection in Open-Set Conditions. Miller et al.,, ICRA 2018)

H( ) |

CERTAIN (KNOWN)

H (o) 1

| UNCERTAIN
(UNKNOWN)

3. Form final detections 4. Obtain class uncertainty for detections

Slide courtesy of Dimity Miller



Uncertainty from Object Detection

MC Dropout SSD (Dropout Sampling for Robust Object Detection in Open-Set Conditions. Miller et al.,, ICRA 2018)
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Slide courtesy of Dimity Miller



Evaluating Uncertainty from Object Detection

Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection
(Miller et al., 2019)

[Measure affinity between samples]

+

[Clustering algorithm]

Slide courtesy of Dimity Miller



Evaluating Uncertainty from Object Detection

Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection
(Miller et al., 2019)

Closed-set Conditions Near Open-set Conditions Distant Open-set Conditions
PASCAL VOC Dataset COCO Dataset Underwater Dataset

Slide courtesy of Dimity Miller



Evaluating Uncertainty from Object Detection

(Miller et al., 2019)

Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection

Error represented by: Closed-Set Dataset Distant Open-Set Dataset

Near Open-Set Dataset
(Correct Detections & Closed-Set Emror) (Correct Detections & Distant OSE) (Correct Detections & Near OSE)

All Datasets

(All detections)

UE (maP) AUROC AUPR AUPR UE (maP) AUROC AUPR AUPR |UE (maP) AUROC AUPR AUPR | UE (maP) AUROC AUPR AUPR

LD T InT Out T LM T IntT Out? LM T IntT Outt LMD T InT Out?
Standard SSD 22.7(504) 84.1 968 484 |16.2(61.7) 913 988 70.6 |23.5(50.4) 85.1 98.0 525 |21.6(53.0) 86.5 940 755
BSAS IoU 0.95 222(542) 8438 96.7 51.0 |10.5(59.6) 95.2 99.2 83.8 |[19.5(56.6) 88.5 98.5 58.8 [18.6(56.6) 89.4 948 R82.0
HDBSun Corner 21.3(53.7) 848 96.5 515 |12.7(59.6) 940 990 796 |22.7(56.2) 85.5 98.0 548 |19.8(56.2) 88.0 940 794
i JOR(604) 050 001 R4) 1211604 74  OR1 __S0S IRIS67) RO7J 040 K37

BSAS IoU 095 & SL 21.6(54.2) a 99(59.6) 954 99.2 864 |17.8(56.6) 90.0 984 66.7 |17.5(56.6) 90.3 946 85.1 l
20.7(559) 86.2 370 |10.3(61.8) 95 99.1 85.7 |20.2(61.8) 87.9 98.1 627 [18.2(58.0) 899 942 847

Basic Sequential Algorithmic Scheme (BSAS) clustering using Intersection over Union (loU) and winning

label (SL) as affinity measures.

Slide courtesy of Dimity Miller




Propagate uncertainty from Perception through the world model into decision making and actions?



Probabilistic Object Detection



