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Visual Place Recognition: A Survey

Stephanie Lowry, Niko Underhauf, Paul NewmaFellow, IEEE, JohnJ. Leonard Fellow, IEEE,
David Cox, Peter Corké;ellow, IEEE and Michael J. MilfordMember, IEEE

Abstract— Visual place recognition is a challenging problem
due to the vast range of ways in which the appearar of real-
world places can vary. In recent years improvementsn visual
sensing capabilities, an ever-increasing focus oarlg-term mobile
robot autonomy, and the ability to draw on state ofthe art
research in other disciplines — particularly recogition in
computer vision and animal navigation in neurosciece — have all
contributed to significant advances in visual placerecognition
systems. This paper presents a survey of the visuallace
recognition research landscape. We start by introdecing the
concepts behind place recognition — the role of pte recognition
in the animal kingdom, how a “place” is defined ina robotics
context, and the major components of a place recogion system.
We then survey visual place recognition solutions of
environments where appearance change is assumed foe
negligible. Long term robot operations have reveakd that
environments continually change; consequently we seey place
recognition solutions that implicitly or explicitly account for
appearance change within the environment. Finally & close with
a discussion of the future of visual place recogndn, in particular
with respect to the rapid advances being made in ¢related
fields of deep learning, semantic scene understamdj and video
description.

Index Terms—Visual Place Recognition.

ISUAL place recognition is a wetlefined but extremely

challenging problem to solve in the general segaan
an image of a place, can a human, animal or rokotdd
whether or not this image is of a place it hasamlyeseen?
Whether referring to humans, animals, computersobots,
there are some fundamental things a place recogrstystem
must have and must do. Firstly, a place recognifgsiem
must have an internal representation — a map —hef t
environment to compare to the incoming visual dat
Secondly, the place recognition must report a beli@out
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whether or not the current visual information isnfr a place
already included in the map, and if so, which dPerforming
visual place recognition can be difficult due toramge of
challenges; the appearance of a place can chaagéodtly
(see Fig. 1), multiple places in an environment rioak very
similar, a problem known as perceptual aliasing] places
may not always be revisited from the same viewpaintl
position as before.

(b)
Fig. 1. A visual place recognition system mustatde to (a) successfully
match very perceptually different images while @8o rejecting incorrect
matches between aliased image pairs of differetgsl.

In robotics, this research topic is highly relevgiten the
ever increasing focus on long term mobile robobaaimy and
rapid improvements in visual sensing capabilitiesl @ost.
Vision is the primary sensor for many localizatiamd place
recognition algorithms [1]-[19]. Place recognitia also a
growing research field, as evidenced by citatioalyses and a
number of dedicated place recognition workshopseagent
and upcoming robotics and computer vision confezsnc
including the International Conference on Robotics and
Automation (2014, 2015) and thdEEE Conference on
Computer Vision and Pattern Recognitiof2015). The
problem of persistent place recognition has alsonéa a
regular component of many more general workshogsding

e long-running ICRA workshop on Lotigerm Autonomy
(2011 - 2014).

Our aim in writing this survey article is to proeida
comprehensive review of the current state of placegnition
research that is relevant both to robotics androtietds of
research including computer vision and neurosciefde
timing for such a survey is particularly fortuitogsven major
events across these related fields: for example, a@lmost
universal usage of deep learning techniques ir sththe art
recognition systems in computer vision, and the42Bbbel
Prize in Physiology or Medicine award to Edvard kIos
May-Britt Moser and John O’Keefe, who discovered Wey
representations of place in the mammalian brains Paper
provides an overview of the place recognition peabland its
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relationship with many major robotics research dfi
including SLAM, localization, mapping, and recogmit
Because of the increasing focus in the researchmeority on
long term robot autonomy in challenging environrsente
also provide a padular focus on the problem of lifelor
visual place recognition for robots.

Il. THE CONCEPT OF PLACE INROBOTICS AND THE NATURAL
KINGDOM

The problem of navigation and place recognition k:
venerable tradition in psychology and neurosciemhtel948,
the research of Tolman [20bn rats navigating maz
motivated him to propose theognitive ma — a mental
representation of the world with information out
relationships between places that animals gradiedisn. The
concept of the cognitive map, while not without dstics
[21], [22], has been influential not only in psychology
neuroscience, but also areas such as urban pl;, where
Lynch [23] proposed thahe elements of a cognitive mbe
paths, edges, nodes, dists and landmarl, and in robotics,
where mapping approaches have been inspired by
cognitive map [24], [25] and by its successor, the spe
semantic hierarchy [26].

With the developmentof techniques to record neu
activity in the brain of animals [2ame the idetification of
place cells in the rat hippocamplog O’Keefe and Dostrovs|
[28]. Place cells fire when the rat is in a particydkace in the
environment (see Fig.(&)), and the population of place ¢
cover the entire environment [29], [3®urthermore, if a re
moves from one environment to another, the saneepialls
can be used to represent multiple different envirents.
O’Keefe and Conway [31proposed that these place c
form a part of Tolman's cognitive map. The undemdiiag
about the relationships between neural activity plate: in
the world was extended by the discovery of headction
cells in the dorsal presubiculum [32hd of grid ces [33] in
the medial entorhinal cortex (MEC). Heairection cells fire
when an animal turns its head in a particular divacrelative
to its body, while grid cells fire in multiple ples in the
environment, in such a format that their firingldie form a
regular grid (see Fig. 2(b)).

Fig. 2. Neuroscience experiments have showntiteabrains oanimals such
as rats contain place cell and grid cell neurd&eh place cell fires strong
at one location in an environment, while each gril fires a multiple,

regularly spaced location§his figure shows the firing locations (a) a place
cell and (b) a grid celplaced over the path of an animal a square
environment (from [34]).

Place recognition, as observed via the firing @fcpl cells
is triggered by both sensory cues and-sedtion [29]. Studies

with rats show that placeell firing is initially based on se
motion, but if the environment is chan( - by altering the
distance between start and end g, for example - the place
cell will update to the correct location according the
external visual landmarl85], [36]. The correction may occur
smootly or abruptly, depending on the size of the misihz
Many of the same concepts arise in robotics. Mobbts
have access to external observation data as we#ltmotion
information. Topological and metric relationshipstweer
places are used in @dination with sensory cues to determ
the most likely place, similar to the neuronal rfgi of the
place cells. Fig. 3presents a schematic of a visual pl
recognition system. Visual place recognition systentair
three key components an image processingmodule to
interpret the incoming visual data; map that maintains a
representation of the robot's knowledge of the diodnd &
belief generatiomodule, which uses the incoming sensor
in combination with the map make a decision about whether
the robot is in a familiar or novel place. A plaszognition
system may also use moticor transition information to
inform the belief generation process. Furthermorest place
recognition systems are designed to oje online, and thus
must update the map according

1

: Updatc Map

Vision
data

Image
Processing

Place
recognition
decision

) Belief Generation
Motion

data

Fig. 3. Schematic of a visual place recognition systemormiag visual dati
is processed by thienage processir module. The robot's knowledge of the
world is stored in thenap Thebelief generatio module decides whether the
current visual data matches a previously storedepl&otion information i
also often included, and the map may be continugdjated during operatic

This paper discusseghat qualifies as a place the context
of robotic navigation. It then looks at the threzykmodules
that make up the place recognition system: the &
processing module, the mapping framework, and thleeft
generation module. The paper then turns to thelg@molof
changing envbnments. It revisits each of the modu- the
image processing module, the mapping module andélief
generation module -and investigates how each has to
adapted to incorporate the notion of appearancegehnto
the place recognition system’s del of the world.

IIl.  WHAT IS A PLACE?

The concept of places in robotics is motivated hg
challenges of robotic navigation and mapping. Al reéot
has fallible sensors and actuators and it is ahgiliey to build
a metricallyaccurate map of the worldnd to maintain self-
localization within such a representation. The ciration of
both these goals, known as Simultaneous Localizasind
Mapping (SLAM) [37]441], is even more difficult to
consistently achieve.

An alternative approach to use a “relational map, which is
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rubbery and stretchy, rather than to try to plaeseovations in  segmented regression [51] to define places within a
a 2-D coordinate system” (Brooks, [40]). Such aotogical topological map [48], [52]. These methods createwa place
map is conceptually similar to the biological notiof a when the current appearance (determined from tmsose
cognitive map, and uses nodes to represent thébpogtaces measurements) is unlikely according to the currentel of

in the world and edges to represent the possililesggetween the environment, and therefore a new model is reduisee
these places. Robot navigation is reduced to fafigwthese Fig. 4). Similarly, Korrapati, Courbon et al. [585ed Image
edges between nodes and the places represent Emguencing Partitioning (ISP) techniques to groigually

intersections or decision points between route$, [BB] as
well as desirable end goals.

This topological approach to navigation is not with
difficulties. The robot has to associate theserabstroutes
and places with physical places and paths, andcoheplex
relationship between the robot sensors, the rotatrels, and
the robot’s topological and metric interpretatiaighe world
need to be defined [26]. Another issue is how aotradan
generate topological maps. If the robot has acttessmetric
gridmap of the environment, it can extract topabadi
information, emphasizing relevant navigation infatian like
open spaces and passageways [44]. Alternatively,
topological map can be created by a robot fromalisand
transition information.

The definition of a place depends on the navigatiamtext,
and may either be considered as a precise positi@nplace
describes part of the environment as a zero-diroeakpoint”
(Kuipers, [26]), or as a larger area — “a place mtsp be
defined as the abstraction of a region” where aioreg
“represents a two-dimensional subset of the enwient”
(Kuipers, [26]). A place can be a fairly large tdisnensional
physical area — for example, a room in a buildinghtin
some cases qualify as a single place, while inrothses it
might contain many different places. A region coaldo be
defined as a three-dimensional area, depending han
requirements of the environment or robot. Unlikelaot pose,
a place does not have an orientation, and an oggtiallenge
in place recognition is pose invariance — ensuragpgnition
regardless of the orientation of the robot wittia place.

The location of each place — whether a one-dimeasio
point or a larger region — can be selected basespatial or
temporal density. In this approach, a new placeadsled
according to a particular time step, or when thbotohas
travelled a certain distance. Alternatively, a placan be
defined in terms of its appearance. Kuipers andnBj2b]
defined a place as somewhere distinctive relativeother
nearby locations, according to some associated osens
information known as a place signature or placecrijason.
While the distinctiveness criterion is not alwayxjuired, a
topological place is defined as having a certaipeapance
configuration [45], [46] and the physical bounds afplace
occur where the appearance changes significandijed a
“gateway” [47].

This qualitative concept of topological places agions
that are visually homogeneous needs to be quahtifithat is,
how can a place recognition system actually segnieat
world into distinct places? Ranganathan [48] ndteat there
are similarities with the problem of change-poietettion in
video segmentation [49], [50], and used changetpoi
detection algorithms such as Bayesian surprise [&0d

similar images together as topological graph nodesile
Chapoulie, Rives et al. [54] combined Kalman filigrwith
the Neyman-Pearson Lemma. Murphy and Sibley [55]
combined dynamic vocabulary building [56] and imoental
topic modelling [57] to continually learn new topgical
places in an environment, and Volkov, Rosman ¢68].used
coresets [59] to segment the environment. Topic etiog,
corsets, and Bayesian surprise techniques carbalssed for
other aspects of robotic navigation, such as sutzingra
robot’s past experience [60]-[62], or determiningpleration
strategies [63].

o
9
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Fig. 4. Topological place recognition systems segnthe image stream into
places based on the visual information. When aifgignt change is
observed, a new place will be created. In this etanffrom [48]), the
incoming image stream (top row) is segmented basetihe detected change
points. The detected places (bottom row) matchetjo® the different rooms
shown by the ground truth location (middle row).

Appearance-based and density-based place selection

methods are practical to implement as they depend o

easurable quantities such as distance, time @oselues
[64]. An ongoing challenge is the enhancement gleapance
information with semantic labels such as “door”
“intersection” so places can be selected onlinetam their
value as decision points. The addition of semadtta to
maps can improve planning and navigation tasks, [&&H
requires place recognition to be linked with otherognition
and classification tasks, especially scene clasgifin and
object recognition. These relationships are synbietplace
recognition can improve object detection by providi
contextual priming for object detection as well astextual
priors for object localization [66], and converselgbject
recognition can also aid place recognition [67]H70
particularly in indoor environments where the fumctof a
place such as “kitchen” or “office” can be inferréfdm the
objects within it, and used to infer the locatioanh a labeled
semantic map [71].

or

IV. DESCRIBING PLACES THE IMAGE PROCESSING MODULE

Visual place description techniques fall into tweodd
categories; those that selectively extract partb@image that
are in some way interesting or notable, and thloaedescribe
the whole scene, without a selection phase. Exanplehe
first category are local feature descriptors sSuslSHT [72]
and SURF [73]. Local feature descriptors first iegua
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detection phase which determines the parts of riegé tc
retain as local features (see Fig. 5(&))contrast, an examp
of the second category are globalvdrole-imagedescriptors
such as Gist [74]which do not have a detectionase but
process the whole imagegardless of its conte (see Fig.

(a)
Fig. 5. Visual place description techniques fall into twodd categors. (a)
Interesting or salient parts of the image are setefor extraction, descriptic
and storage. For example, SURF [@3}racts interest points in an image
description.The number of possible features may vary dependimghe
number of interest points detected in the imadee Tedcircles are interest
points selected by SURF within this imagle) The imae is described in a

(b)

pre-defined way without first detecting interest poi. Whole-image
descriptors such as Gist [74], [75] divide image int blocks as shown by
the red line and processes each block regardless of its d¢

A. Local feature descriptors

The development of the local feature method ¢
Invariant Feature Transforms or SIF[72] led to its
widespread use in place recognition H{8B]. As other local
feature detection and description meils were developed,
they too were applied to the visual localizatiord golace
recognition problem. For example, Ho and Newr[84] use
Harris affine regions [85]Murillo, Guerrero et al[86] and
Cummins and Newman [87] use SpeetlgmiRobust Features
(SURF) [73], while FrameSLAM [2]Juses CenSurk[88].
Since local feature extraction consists of two $— detection
followed by description -t is not uncommon to combir
different techniques for each. For example, MehleSi et al.
[89] use the detection technique FAD] to find keypoints
in the image, which are then described by SIFT rmigters.
Similarly, Churchill and Newman [15)se FAST extractio
combined with BRIEF [91] descriptors.

Each image may contain hundreds of local featunes!
directly matching image feates can be inefficient. Ttbag-
of-words model [92], [93]ncreases effiency by quantizing
local features into a vocabulatliat canbe compared using
text retrieval techniques [94]The ba-of-words model
partitions a feature space, such as SFBURF descripto,
into a finite number of visual wordse¢ Fig. 6). A typical
vocabulary contains 500010,000 words, but a vocabulary
large as 100,000 words has been used for placgmitiom by
FAB-MAP 2.0 [87] For each image, every feature is assi¢
to a particular word, ignoring any geometric or tg:
structure, thereby allowing images to be reduceditary
strings or histograms of length wheren is the number of

words in the vocabulary.
-1
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Fig. 6. A bag-ofwords model clusters similar features into a sing&ial
word to make recognition more efficient and strifiglwarc. This image
(from [6]) shows examples of image patches all correspondira single
visual word. This word matchegndow frame¢ crosspieces.

Images described using the g-of-words model can be
efficiently compared using binary string comparisoarch as
Hamming distance or histogram comparison technic
Vocabulary trees [95tan make the procedor large-scale
place recognition even more efficient. Originallpposed fo
object recognition, vocabulary trees use a hiereathmodel
to define words, an apprca that enables faster lookup
visual words and the use of a larger and thus 1
discriminating vocabulary. Localization systemstthae the
bag-ofwords approach includ[82], [84], [87], [96], [97] and
many others.

Because the bag-efords model ignores the geomel
structure of the place it is describing, the resgltplace
description is pse invariar: the place can be recognized
regardless of the position of the robot within thkace.
However, the addition of geometric information tplace ha
been shown to improvéhe robustness of place matching,
particularly in changing conditiong14], [87], [98]-[100].
These systemmiay assume a laser sensor is available fo
information [98] use stereo visio[14], epipolar constraints
[100], [101] or simply define the scene geometry accort
the position of the elements within the im{102], [103]. The
tradeoff between pose invarianc— recognizing places
regardless of the robot orientat — and condition invariance —
recognizing places when the visual appearance ch — has
not yet been resolved, and is a current research cigalléen
place recognition.

The bag-ofwords model is typically p-defined based on
features extracted from a training image sequerides
approach can be limiting as the resulting model
environment-dpendent and needs to betrained if a robot is
moved into a new area. Nicosevici and Ga[56] propose an
online method to continuously update the vocabutased ol
observations, while still being able to match pobservation:
with future observationsAs a result, a biof-words model
can be usedvithout requiring a pr-training phase, and can
adapt to the environmemut-performing pre-trained models
despite requiring less priori knowledge [56].

B. Global descriptors

Global place descriptors used in early localon systems
included color histogram¢g5] and descriptors based on
principal component analys[104]. Lamon, Nourbakhsh et al.
[105] used a varietpf image feature— such as edges [106],
corners [107fgnd color patcht — combined into a fingerprint
of a location. By ordering these features in a esaeqe
between 0° an@®60°, place recognition could be reducec
string-matching. These systems used omnidirectional car
which allowed rotationiavariant matching at each plau

Global descriptors can be generated from localufe:
descriptors by preefining the keypwnts in the image — for
example, using a gridased pattel — and then using the
chosen feature description method on the -selected
keypoints. Badino, Huber et a[108] used whole-image
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descriptors based on SURF features known as WI-StdRF

perform localization and BRIEF-Gist [109] used BRIE
features [91] in a similar whole-image fashion.

A popular whole-image descriptor is Gist [74], [#8hich
has been used for place recognition on a numbeccdsions
[110]-113]. Gist uses Gabor filters at differenteatations
and different frequencies to extract informatioronfr the
image. The results are averaged to generate a cbm@etor
that represents the “gist” of a scene.

C. Describing places using local and global techniques

Local and global descriptors each have differentiathges
and disadvantages. Local feature descriptors areestricted
to defining a place only in terms of a previousabpose, but
can be recombined to create new places that have
previously been explicitly observed by the robatr Example,
Mei, Sibley et al. [114] defined places via co-hibty: the
system finds cliques in the landmark co-visibilitap which
define places even when the landmarks have
simultaneously seen in a single frame, and can eofiapn
standard image-based place recognition [78]. LyBarsse et
al. [115] generated a 2D space of descriptor vatesre
regions of high vote density represent loop closamdidates.

Local features can also be combined with met
information to allow metric corrections to localiwa [2], [7],
[76]. Global descriptors do not have the same Hfidiky, and
furthermore, whole-image descriptors are more figie to
change in the robot’s pose than local descriptothous, as
whole-image descriptor comparison methods tendssurae
that the camera viewpoint remains similar. Thisbfgm can
be somewhat ameliorated by the use of circulartsskai$ in
[116] or by combining a bag-of-words approach watlGist
descriptor on segments of the image [17], [110].

While global descriptors are more pose dependeah t
local feature descriptors, local feature descrigptperform
poorly lighting conditions change [117] and
comprehensively out-performed by global descriptats
performing place recognition in changing conditidid8],
[119]. Using global descriptors on image segmedatiser than
whole images may provide a compromise between whe
approaches, as sufficiently large image segmeritbiexsome
of the condition invariance of whole images, anffigently
small image segments exhibit the pose invariancéocdl
features. McManus, Upcroft et al. [120] used thebgl
descriptor HOG [121] on image patches to learn itimd
invariant scene signatures, while Sunderhauf, 3iiea al.
[122] used the Edge Boxes object proposal meth@s][1l
combined with a mid-level Convolutional Neural Netw
(CNN) feature [124] to identify and extract landikeras
illustrated in Fig. 7.

are

Fig. 7. Object proposal methods such as the EdgeBmethod [123] shown
here were developed for object detection but capn &k used to identify
potential landmarks for place recognition. The oaibboxes in the images
above show landmarks that have been correctly redtdbetween two
viewpoints of a scene (from [122]).

D. Including 3D information in place descriptions

nolhe image processing techniques described above are
appearance-based — they “model the data directlyarvisual
domain (instead of making a geometric model)” (Kros
Vlassis et al., [125]). However, in metric localiba systems,
nte appearance-based models must be extended \wittic m
information. Monocular image data is not a natwalrce of
geometric landmarks — “the essential geometry ef lorld
does not ‘pop out’ of images the same way as itsdoem
laser data” (Neira, Davison et al., [126]). Whilamy systems
riise data from additional sensors such as lasef9{%GB-D
cameras [127]-[129], geometric data can also beaebed
from conventional cameras to allow metric calcolatdf the
robot pose.

Metric range information can be inferred using eter
cameras [2], [130]-[132]. Monocular cameras caw afder
metric information using Structure-from-Motion afgbhms
[133]. Methods include MonoSLAM [7], PTAM [134],
DTAM [135], LSD-SLAM [136] and ORB-SLAM [137].
Metric information can be sparse: that is, rangasneements

pare associated with local features such as imagh@aas in
MonoSLAM [7], SIFT features as in Se, Lowe et al6]|
CenSurE features as in FrameSLAM [2], or ORB fezdur
[138] as in ORB-SLAM [137]. In contrast, DTAM stare
dense metric information about every pixel, and LSIDAM
maintains semi-dense depth data on the parts ofntlage

t containing structure and information. Dense mettiata

allows a robot to perform obstacle avoidance andrice
planning as well as mapping and localization, sdy fu
autonomous vision-only navigation can be perforfid&d.

The introduction of novel sensors, such as RGB4Dearas,
that provide dense depth information as well agendata has
spurred the development of dense mapping technift@s
[127]-[129], [139], [140]. These sensors can algplat 3D
object information to improve place recognition. All++
[70] stores a database of 3D object models and tlies
database to perform object recognition during retigg, and
uses these objects as high-level place featurgectBthave a
number of advantages over low-level place featuthey
provide rich semantic information, and can reducemory
requirements via semantic compression; that isingtmbject
labels rather than full object models in the may.[7
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V. REMEMBERING PLACES THE MAPPING MODULE

For a place recognition or navigation task, theesysneeds
to refer to a map — a stored representation of rdmt’'s
knowledge of the world — to which the current obaépn is

features). This paper showed that place
performance improves if only the most informativeatures
from each image are used, where information gaindasured
using a conditional entropy calculation. Improvethcp

compared. The map framework differs depending omtwhrécognition with a reduced feature set was alsemiesl by Li

data is available and what type of place recogmitfobeing

and Kosecka [142].

performed. Table | displays a taxonomy of mapping FAB-MAP 2.0 [87], [143] also used an inverted indeith

approaches, which depends on the level of phyalzstraction
in the map, and whether or not metric informatisrinicluded

a bag-of-words model to demonstrate visual placegeition
across a 1000 km path. While Schindler, Brown ef3lused

in the place description. The most concrete mappi,@voting scheme to match locations, FAB-MAP’s piulistic

framework listed is the topological-metric or topetric map.
Although it is possible to have a globally metriapn such
maps are only feasible in small geographical araad,there
are mechanisms for fusing topometric maps into algb
metric maps [141]. Thus for the purposes of plamgnition
any globally metric map can be considered as anode-

topometric map.
TABLE |
MAPPING FRAMEWORKS FORVISUAL PLACE RECOGNITION

Level of map -
abstraction Place description type Comments
Pure image retrieva Appearance-based _ No pqguon
informatior
Topological Appearance-based Includes transition
poros information

Topological-metric

Appearance-based

Includes metric
information between
but not within places

Sparse metric
information
(landmark maps)

Dense metric
information

SLAM system —
includes metric
information between
and within places

(occupancy grid map

A. Pure image retrieval

The most abstract form of mapping framework forcpla
recognition only stores appearance information aleach
place in the environment, with no associated pwsiti
information. Pure image retrieval assumes that hidcis
based solely appearance similarity and applies émagieval
techniques from computer vision that are not spetif place-
based information [3]. Although valuable informatics lost
by not including relative position information, tkee are
computationally efficient indexing techniques thezdn be
exploited.

A key concern with place recognition is system alogity —
as the robot visits more and more places, storag@nements
will increase and search efficiency will decreass.a result,
maps need to be designed to ensure large-scaterty. If a
bag-of-words model is used to quantize the desmrigpace,
image retrieval can be accelerated using invemeddeés; the
image ID numbers are stored against the wordsaibear in
the image, rather than the words being stored apahe
image IDs. Inverted indices allow much quicker éfiation of
unlikely images, rather than requiring a linearrskaof all
images in the database.

Schindler, Brown et al. [3] used a hierarchical almgary
tree [95] to achieve efficient visual place recaigmni of a city-
sized dataset (a 20km traversal with around 10diomil

model that includes negative observations — wdnds donot

appear in the image — as well as positive obsemstiequires
simplification before the inverted index approacancbe
applied.

Place recognition can also be made more efficigniding
hierarchical searching at the place level as wsllaa the
vocabulary level. Mohan, Gélvez-L6pez et al. [144]ected
the most likely environment using co-occurent featu
matrices. Then place matching is performed usinty en
subset of the previously seen places, reducing time
required for searching.

B. Topological maps

Pure topological maps contains information abolstine
positions of places but do not store metric infaiora
regarding how these places are related [5], [618],L[119].
Topological information can be used to both inceedise
number of correct place matches and filter out fires
matches [14], [84]. A probabilistic system like FARAP can
be run as a pure image retrieval process by assumin
uniform location prior at all steps, but performarimproves
when transition information is included through Bsian
filtering or similar techniques.

While image retrieval techniques can use an inderidex
to improve efficiency, topological maps can useoeation
prior to speed up matching: the place recognitigstesn only
has to search places known to be close to the 'sobotrent
position. A sampling-based method such as a pafiletr can
be used to sample possible places [12], [13], [1[L4]5]. The
particles are resampled according to which placeshe most
likely, and can stay close by the current roboatmn if it is
well-localized, or spread out across the whole rmvnent if
the robot is lost. Computation time is thus projpol to the
number of particles, not the size of the environhig46].

Alternatively, since the number of loop closures dn
environment is naturally sparse, Latif, Huang et[#9] use
topological information to formulate place recogmit as a
sparse convex L1-minimization problem, and appkcient
homotopy methods [147] to provide loop closure lipees.

The addition of topological information into thecognition
process allows place recognition using low-resotutiata and
thus lower memory requirements. Using the sparageool.1-
minimization formulation, successful place recoigmit was
achieved using images as small as 48 pixels [19¢nEn
challenging scenarios where images are blurredbserved
under different environment conditions such asedéft times
of day, the use of topological information allowisual place

recognition
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recognition using as few as 32 4-bit pixels pergmag148],
[149].

C. Topological-metric maps

As image retrieval can be enhanced by adding tgdb
information, topological maps can be enhanced lojuding
metric information — distance, direction, or botlor-the map
edges. For example, both FAB-MAP [6] and SeqSLANIF]JL
are originally purely topological systems, but tdition of
odometry information has been demonstrated to ingeach
system’s place recognition performance by CAT-SLAN]
and SMART [150] respectively.

These topological-metric maps can be appearanasbas
which case metric information is only included adative

[163]: a system can perform local metric correctisimg laser
scan data [80], [163] or visual odometry [1], [2hie a
separate global process looks for matches in dimlesiose
large loops.

If the place descriptions are appearance-baseddambt
contain any metric information, but the map corgametric
distances between places, the system can stillthesdoop
closures to perform metric correction at the plasel [151]—
[154]. However, if the place descriptions contairetrt
information associated with the image featuressabe case
for FrameSLAM [2], then a more precise correcti@n de
performed. Maps that are purely topological or pumage
retrieval do not provide any metric pose correctibnthese
cases, localization at a topological level occulst is, the

posesbetweeneach place node [151]-[154]. However, mem%ystem simply identifies the most likely location.

information about the position of landmarks or akgein a

place can also be storedthin each node [1], [2], [26], [141],

[155]-[158]. The metric information within the tdpgical
place node can be stored as a sparse landmark Zhafy][

The place recognition maps that contain metricrméztion
both within and between the place descriptionshmnsed to
perform a full metric SLAM solution. There are adeirange
of SLAM techniques available as summarized in [£{4G6].

[76], or as a dense occupancy grid map [135] iftllepthryn and Leonard [166] identify three key SLAM paigms:

information is extracted from the image data. Altho the
notion of dense spatial modeling using a truncaiphed
distance function (TSDF) representation can besttdiack to
the work of Moravec and Elfes [39] in the mid-198@shas
become feasible only in the past few years, withativent of
GPU technology [135].

VI.

Ultimately the purpose of a place recognition sysis to
determine whether a place has been seen befores fhieu
central goal of any place recognition system isomeding
visual input with the stored map data to generatieekef
distribution. This distribution provides a measafdikelihood
or confidence that the current visual input matchesrticular
location in the robot’s map representation of thalde There
is a general understanding that if two places desans
appear similar there is a greater likelihood ofnthéeing
captured at the same physical location, but theedetp which
this is true depends on the particular environmesur
example, repetitive environments may exhibit petaip
aliasing where different places look indistinguisiea
Conversely, changing conditions may cause the sdaoe to
appear drastically different at different times.

RECOGNIZING PLACES THE BELIEF GENERATION MODULE

A. Place recognition and SLAM

Place recognition plays an important role in posaply
SLAM algorithms by providing loop closure candidaf&59].
Pose graphs, also known as view-based represergdfi60],
[161], are widely utilized in modern SLAM systemechuse
of their computational efficiency for fixed size psa although
they can suffer from an increase
requirements for long duration missions. Loop ctess vital
for consistent mapping as it allows the systemawext drift
in local odometry measurements [162], [163]. It che

Extended Kalman Filters (EKF) [37], [38], [167]-™6and
Rao-Blackwellized particle filters [170], as wek #he pose
graph approach discussed above [162], [163], [11TB].

Vision-based systems utilize all these methods: d&AM

[7] uses an EKF, while Rao-Blackwellized particilkefs are
used in [12], [174], [175] and pose graph optinmzat
techniques in [2], [176].

B. Topological place recognition

If multiple streams of data are available a votsgpeme
[3], [5], [79], [96], [177] can be used. Ulrich atburbakhsh
[5] used a Jeffrey divergence to compare coloogistms and
each color band votes for what it considers thetrliksly
location. Depending on the votes, the system cartohédent
if the confident bands are unanimous and the tmafidence
is above a certain threshold, uncertain if nonthefbands are
sufficiently confident, or the total confidence wealis too low,
or confused if the confident bands disagree ordta&tion.

If a system uses the bag-of-words model, inspieeid ia by
text-based document analysis, it may use the ckldErm
Frequency-Inverse Document Frequency (TF-IDF) s{o8§
[114], [178]. Each visual word in an image has alDF
score, which is made up of two parts — the termuency,
which measures how often the word appears in tlagénand
the inverse document frequency, which measureshghdhe
word is common across all images. The TF-IDF st®tden
the product of these two values.

A probabilistic calculation can also be used to pate
place matching likelihood, using a calculation lothea Bayes
theorem. Early examples of appearance-based piisiabi

in computationabcalization used Gaussians to represent probabllt9], or a
Expectation

mixture of Gaussians combined with
Maximization (EM) [180], or a Gaussian kernel [184ith
Parzen smoothing [125]. Other choices for the olsiEm

decoupled from the online local update step, anchymalikelihood include the use of TF-IDF for the obsaion

systems independently perform both SLAM-like looadtric
correction and topological-like loop closure [1R],[ [80],

likelihood, if a bag-of-words model is being us&3], [182].
Siagian and Itti [111], [183] use Monte Carlo Ldzation
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(MCL) with two observation update steps each with aincrementally: after each deployment a better serget is

independent observation likelihood, one based erségment
likelihood and one based on the object likelihoGarcia-
Fidalgo and Ortiz [184] use the observation liketid that
relates the number of feature matches between riveges to
the overall number of features in the image, scdigda
normalizing constant.

The observational likelihood can also be computed a/
data-driven approach. FAB-MAP [6], [87] is a proltiakic
appearance-based localization system that usesasddeen
approach to calculating an observational likeliho&@®\B-
MAP uses a bag-of-words model with SIFT or SURRezs
for image description and calculates the distimsiass of
each word during a training phase. As a bag-of-waorbdel
may have many words — FAB-MAP has been used with
100,000-word vocabulary [87] — the full joint prddiiy
distribution of the observed words (Fig. 8(a)) cae
approximated by a naive Bayes assumption (Fig.) &bk
Chow-Liu tree [185] (Fig. 8(c)).

®

® &

® @ @

(b) (c)

Fig. 8. FAB-MAP learns a probabilistic model of thelationship between
word appearance and place recognition. (a) A &ititjdistribution takes into
account the relationships between words (the thiicks between words
represent those with the largest mutual informatidb) A naive Bayes
approximation of the full joint distribution ignaethe mutual information
between the words and assumes that all words appeégpendently. (c) A
Chow-Liu tree approximates the full joint distrirt as a junction tree where
each word depends only on one other word (from [6])

FAB-MAP handles the perceptual aliasing problem b
considering not only whether two locations are Eimin the
sense that they have many visual words in commonalso
whether the words in common are sufficiently ranattthe
locations can be considered distinctive. As a tesfiltwo
locations look similar but the words that appear faequently
observed, FAB-MAP will generate a
probability. FAB-MAP achieves this by using the deminator
as a normalizing constant that is calculated oerset of all
previously seen locatiorendthe set of all locations that have
not yet been visited.

Originally, the set of unvisited locations was midetk by

randomly sampling from the Chow-Liu tree, and the

probability that the robot was at a location thas ot yet
been observed was a user-defined parameter. Howeael
and Newman [60], [62], [186] presented an iterata@&rning
mechanism to generate a representative set of rhe
distribution of the appearance of the world. LatBirichlet
Allocation (LDA) [187] was used to cluster imageso major
topics that summarize how the world, as seen sdyathe
robot, appears. These topics are used to genersaenpling
set that is proportional to what is common in tharld/ — for
example, foliage occurs frequently in many envirents so
should not be considered distinctive. The systemrnie

t

low matching

created as the system incrementally learns abautwibrid.
Furthermore, an online-offline learning procesprigposed —
during the robot’'s “down-time” further relevant datan be
searched for on the internet to learn more abaunbrid.

Olson [188] observes that “correct hypotheses gdiyer
agree with each other, whereas incorrect hypothtses to
disagree with each other”. This property can bedute
eliminate false positive matches by calculating ar-priise
consistency matrix between possible hypothesesfiadihg
the most consistent set of hypotheses from the mkmbi
eigenvectors. The same paper also observes thatthent of
information required to generate a belief matchuthscale
with the robot's positional uncertainty. The systmsures this
ky requiring that local hypothesis matches covefamge
physical space in comparison to the robot's pasitio
uncertainty, to ensure that the robot will not beoirectly
located within its uncertainty ellipse.

This approach contrasts with FAB-MAP’s requiremeht
few highly distinctive matches. Instead, many mesclare
required over a large area, but these matches tdoeeal to be
particularly distinctive, as the geometrical redaghip
between the matches ensures the uniqueness ofibehksis.

Biologically-inspired methods for place recognitiorimic
the known place cells structure in the rat hippgmasn[116],
[189]. In RatSLAM [116], a type of neural networkdwn as
a continuous attractor network (CAN) is used to elqaace
cells (see Fig. 9). A continuous attractor netwaides a
combination of local excitation and global inhibtti
combined with input from ego-motion and visual seasto
perform localization. In a similar manner Giovangeln,
Gaussier et al. [189] use a place cell model téoper vision-
based navigation in indoor and outdoor environmeuitisout
X metric map.

Self motion signal

e Local excitation

(®)

OOOOOOOEEEOE

Fig. 9. Continuous attractor networks (CANs) arge of neural network
that can be used to model the behavior of plade, ¢tetad direction cells, and
grid cells. (a) shows an example of a CAN used @dehhead direction cells.
Each cell excites itself and units near itself (Ee&al excitation arrows) and
inhibits other cells. (b) shows a stable activitgcket centered at 120°
generated by the combination of local excitatiod gfobal inhibition with
input from a motion input (from [116]).

C. Evaluation of place recognition systems

Topological place recognition systems are typically
evaluated using precision and recall metrics andirth
relationship via a precision-recall curve. A systamlects
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matches based on a particular confidence measheecdrrect
matches are known as true positives, the incomatthes are
false positives, and matches that the system esushe

discards are false negative matches. Precisioefised as the
proportion of selected matches that are true p@sitiatches,
and recall is the proportion of true positives tee ttotal

number of correct values, that is:

. TP
Precisiorr ——
TP+FP
Recall=——
TP+FN

A perfect system would be one that achieves pi@tisif
100% and recall of 100%. Precision and recall afteno
related to each other via a precision-recall cwéch plots
recall against precision for a range of confidevalees.

Until recently, place recognition prioritized avaitte of
false positive matches [6], as introducing fals¢ames into a
map could cause catastrophic failure. As a resaltall at
100% precision was the key metric for place recogmi
success. However, several methods for using tofmabg
information to correct false positive matches haween
proposed [190]-[192] and attention has
eliminating all false positives to finding many potial place
matches and then correcting any mismatches in @ldgical
post-processing step. Increasing the number of niate
matches is particularly important when performintacp
recognition in changing environments, when striatehing
methods are liable to fail.

Furthermore, as place recognition systems tramsitiom
“demonstration” (typically with pre-recorded datets to
“deployment” (operating in

represented, how the mapping frameworks work and the
belief generation process works — and discussesdamiv has
to change to manage a changing environment.

A. Describing places in changing environments

It is clear that the appearance of a place can yeggtly
over time due to a large number of causes includimgnges
in lighting and weather (see Fig. 1). There are tnathods for
performing place recognition when faced with appeee
change — the first tries to find a condition-inweaut description
of the place, the way local feature descriptorsdmsigned to
be scale-, rotation- and illumination-invariant. eTlsecond
method tries to learn how appearance change occurs.

1) Invariant methods

The difficulty of matching places in changing elviments
using conventional local features is a significame for
persistent robot navigation: Furgale and Barfootl7[1
observed that the non-repeatability of SURF featutee to
changing appearance, particularly lighting changes a
major cause of failure during visual-teach-and-e¢pe
experiments. Existing image description methodsehbeen
tested to determine their robustness to illumimatiod other

turned frorohange. In [195], Valgren and Lilienthal tested Bleatures

and a number of SURF variants across change iririgh
cloud cover, and seasonal conditions. The SURFantwiall
outperformed SIFT, but none of the tested featwea® found

to be robust across all conditions. However, irerlatwork
[100] the authors combined U-SURF [73], the mostcsasful
SURF variant, with a consistency check using thipatar
constraint, and achieved between 80% and 100% atorre
matching within small (40 image) datasets.

real-time on autonomous Ross, English et al. [196], [197] studied the effet

vehicles), the performance evaluation methodologgy m lighting change on features using time-lapse fomtagross

change further to include a consideration of thetiap
distribution of place matches within the environmeRor
example, McManus, Churchill et al. [193] used thebability
of travelling a given distance without a successfiatch as a
measure of place recognition success. This mexcesses
how evenly distributed the place matches are acthss
environment and is an important measure for therabve
integrity of a navigation system that uses plaag®geition as
a module.
VII.  VISUAL PLACE RECOGNITION IN CHANGING
ENVIRONMENTS

Early place recognition systems often implicitlyedsthe
simplifying assumption that the visual appearan€eeach
place would not change over the course of the @xeet.

full days to determine the illumination sensitivif each
descriptor. The feature keypoints were predefinétimeach
image, and only the variance of the feature desmripias
tested, in contrast to the work of Valgren anddrthal [100],
[195] which tested the combined effect of featuegedtor and
descriptor. The U-SIFT [72] descriptor was showrdigplay
the greatest lighting invariance of the tested dptw's.
Instead of using point features such as SIFT or SUEher
descriptors can be chosen. Whole-image descriptors been
used in systems such as SeqSLAM [118], [119], [1®8k
demonstrate robustness against environmental change
However, as for other description methods, too tdraa
change in appearance will cause system failure ][HhH
whole-image descriptors also suffer from the addai
problem of sensitivity to viewpoint change [199]dde

However, as robotic systems operate in ever-largdgatures can be used in appropriate environmet [{200],

uncontrolled environments and for longer time pdsiot has
rapidly become apparent that this assumption islomger
valid. Consequently, in recent years there has begrowing
focus on creating persistent robotic navigation teys,
including persistent place recognition techniquise ability
to localize in and generate maps of dynamic enwiramts has
been identified as being of key importance [194]isTsection
revisits each of the previous concepts — how aeplzm be

as they are invariant to lighting, orientation aswhle [200].
Nuske, Roberts et al. [200] used line-based loatbn to
localize against an existing map with a fish-eymee and
tested it in an outdoor industrial area under wegitighting
conditions across times of day from 7:00 to 17:BO@rges,
Zlot et al. [201] extended this system to geneitatewn edge
map using 3D laser data for localization. Howevetad
association using edge features can be challefigitd.
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Techniques such as shadow removal [202] and thefuee
illumination invariant color space [193] can lesghn effect
of appearance variability caused by illuminationame.
Alternatively, a hardware-based solution to plageognition
in variable lighting conditions can be used. McMsyrfaurgale
et al. [203] used scanning laser-rangefinders teater
“camera-like” images that were not
illumination of the scene. This solution had thevaadage of
being applicable in complete darkness. A long-wenfeared
thermal imaging camera is another sensor that eateployed
in a manner similar to a standard camera but wresponds
differently to lighting variance. Maddern and Vid§04]
showed thermal imaging cameras can provide imprglacke
recognition at night-time when visible light camefail.

Convolutional Neural Networks (CNNSs) have recetuden
used as robust feature extractors for place retiognin
changing environments. Exploring the utility of CbBINor
place recognition has been motivated by their tgbib learn
generic features that are transferrable to a waoétrelated
but different visual tasks [205], [206]. [207], EOutilized
CNN features as holistic image descriptors andyaedl the
robustness of different layers against visual appez and
viewpoint changes. They concluded that mid-leveltdees
exhibit a robustness against appearance changés, higher
level features are more robust against changeseiwpoint
and carry more semantic information that can bed use
partition the search space [208].

One aspect of visual data that has not been imatstl in
depth for changing environments is that of colorhily/
conventional images descriptors such as SURF aniBiBR
operate on grayscale images, most available cancegstsre
color images, which have the potential to providsvnand
interesting information about place recognition dnanging
environments. Color information presents an intérgs
paradox for place recognition in changing environtseit is
known to perform poorly as a feature when the ilhetion of
a scene changes [196], but conversely,
information contains information about lighting thaan
improve place recognition dramatically by identifgi and
removing shadows [202]. lllumination invariant inesguse
relative color information and are more reliable fdace
recognition during the day, but are out-performedcblor

relativeor colSimilarly,

10

Ranganathan, Matsumoto et al. [212] learned a fine
vocabulary [213]; a fine vocabulary is similar tobag-of-
words model in that it segments a descriptor spsgeh as
SIFT descriptors, but it does so very finely — imteer 16
million words in [213]. The system then learnedrabability
distribution over these words. The motivation fbe tfine

affected by theocabulary is the observation that descriptorssfiamm in a

highly non-linear way due to illumination changéanging
viewpoint and other effects, and learning a distidn of
alternative words allows these changes to be |daimel
guantified. In [212] the distribution was learnegeo multiple
training runs over the same environment and featuvere
matched across different illumination conditionsgenerate
the probability distribution. Improved performancsas
reported over using a conventional vocabulary [e&&, with
an additional 10%-15% of the dataset being cowyenttched.
The distance metric was also compared and the symocme
KL-divergence was shown to out-perform either ttendard
descriptor distance metric or a probability diseaneetric.

Using webcam footage, Carlevaris-Bianco and Eustice
[214] tracked image patches over different lightaggnditions
to generate a large set (3 million features) ofitpas and
negative examples. From this data, a neural netheatning
technique [215] mapped the patches into a new Spaghich
positive matches were close together, accordingth®
Euclidean distance, and negative matches wereeiugtvay.
The mapped descriptors were shown to be substgmiaire
successful at place recognition than SIFT and SURF
descriptors — compared to SURF descriptors, antiaedél
10% of the test locations were correctly matched.

Neubert, Sunderhauf et al. [18] learned a visuaidiation
between two different seasons. Training images frtaro
different seasons were segmented using SLIC sumdspi
[216]. The superpixels were described using a dakktogram
and a SURF descriptor, and a dictionary of tramsiat of
superpixels from one season to another season egasel.
Lowry, Milford et al. [217] learned a nlear
transformation from images captured in the mortmgmages
captured in the late afternoon. However, for sugpearance
translation to be successful, the pairs of trainingges must
be well aligned.

Learning-based methods frequently require a supedvi

images at night, when the underlying assumptionsutab training phase, which implies that the likely apeeme

black-body illumination are violated [209].
2) Learning methods

The alternative to invariant approaches is to learn
relationship between how places appear at diffetenes.
These method assume that places change appeararee
similar way across an environment, and so changmédel
during training can be generalized to previouslysaen
locations. This assumption has been tested by vibgestatic
webcams from different locations [210], [211]
demonstrating that the most significant transforomet across
time are similar across different places. Furtheemoa
training set of locations can be used to compufircipal
component basis that encodes new locations with asimall
loss of accuracy.

and

change is known and that relevant training datavislable.
Lowry, Wyeth et al. [218] proposed an unsupervikzaning
method for place recognition in changing environtaen
Instead of attempting to predict the appearance lofcation,
the system instead identified and removed potdytial
changing aspects of each observation.

B. Remembering places in changing environments

If the environment is changing, the map also neids
change to continue representing the environmerg. shistem
must determine what to remember and what to folgetay
also be beneficial for the system to maintain midti
representations of a place, as places can vary eeketw
different configurations. This section presents piag
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frameworks for place recognition that have the cépao
handle changing environments in one of these twgswa
either by deciding what to remember and what ta@dgr
and/or by remembering multiple different represtotes.
These systems are not all specific to vision-bagstems, and
many have been designed to handle laser data,
demonstrate concepts that are relevant to any semsdality
or map framework.
1) Remembering and forgetting data

In a dynamic environment, each place representatiost
be updated as new observations are obtained bsobw. A
balance has to be found between using recent ciigmms to
overwrite obsolete information, and not allowingéling
events to overwrite the status quo. However, ifScult to
determine which events are transient and which veweth
remembering. Drawing inspiration from concepts
neuroscience, Biber and Duckett [219] referredhis &s the
“stability-plasticity dilemma”. Biological brainsan inspire
solutions for coping with this dilemma: conceptsclsuas

11

experiment [226], Milford and Wyeth noted that “the
weakness is that the system deals rather ineffigiemith
cyclic changes such as day—night time cycles. @vall night
of operation, the pruning process gradually deweldipe
experience map representation into one suited dalilation
laait night time, somewhat hindering localization ihet
morning.” These observations were corroborated by
Ranganathan, Matsumoto et al. [212], who statet ftraan
indoor office environment, consistently good lozation
through the 24-hour cycle would require around Bréges
per location. Rather than continuously rememberany
forgetting information, the map should hold mukipl
representations of the area — whether at a plabigber level.

A place recognition system can use multiple mapshef
same environment. In the work of Biber and Ducketgch

itmap remembered a different timescale [227]. Somthete

maps represented short-term memory and were updated
frequently whilst others were analogous to longatenemory
and are not updated for hours, days, or weeks. ikgepaps

sensory memory, short-term memory and long-term ongm that updated at different timescales ensured tltat@apping

found in human memory models have been co-optedeate
decision models for remembering and forgetting.

data was not immediately overwritten by a tempordrgnge
in the environment. Instead the most static elememtre

One biologically inspired mapping system passesaen reinforced over time, whilst transient events wiiltered out.

information through an analogue of sensory memorghiort-

Place recognition was performed by selecting treallonap

term memory and long-term memory storage areas][22@hat best fitted the current sensor data.

[221]. In the first stage, a selective attentionchanism
decides which information will be upgraded from sy
memory to short-term memory, based on informatromfthe

Systems that maintain multiple maps of the same
environment may also add new map configurationg afien
they are necessary, rather than according to asedre-

long-term memory. The second stage involves using teneframe [221]. Furthermore, Stachniss and Burda@s]

rehearsal mechanism to determine which informatidhbe

transferred from short-term to long-term memory.inds
attention and rehearsal
persistent, stable and frequently occurring featumre
remembered, whilst transient features are forgotements
must be seen and recognized sufficiently often reefioey are

noted that not every place needs multiple represens —
certain areas such as doorways may exhibit moregehthan

mechanisms ensures that mtite rest of the environment. Such areas may onbsgss a

few key configurations — for example, a door mayopen or
closed — so the world can be described sufficieatigurately
using a finite number of submaps. Each region iriclwh

considered for promotion to a higher level of meynor dynamic activity is observed was segmented fromrése of

Furthermore, obsolete features are slowly filteoed of the
long-term memory. There is a complementary probigm
which elements to ‘remember’, which typically ussmilar
criteria [220], [222] to the forgetting process.

Andrade-Cetto and Sanfeliu [223] required thatfezd be
trustworthy and reliable as well as up-to-date iideo to be
retained, while Bailey [222] considered a usefusnesteria
based on visibility — a feature that can be blockgdother
elements of the environment is liable to suffemfrocclusion
errors and be less useful in the future. JohnsYardy [102]
and Hafez, Singh et al. [224] used a bag-of-wordslehand
applied a quality measure to determine useful featuo
retain, considering both feature distinctiveness deature
reliability when generating a model of a locatidohns and
Yang [225] also proposed a generative bag-of-wondslel
that considered the variance as well as the melaie wd each
data point when matching scenes.
2) Multiple representations of the environment

Not only do places change in appearance over tethey
may also change in a cyclic manner that cannoepeesented
by a single description. During a two-week officesbd

the map in a submap. Fuzkyneans clustering was used with
the Bayesian Information Criterion to determine tpimal
number of typical configurations of this area. 4sBubmaps
to segregate dynamic areas allowed multiple enwiental
configurations where necessary whilst keeping thepm
manageable.
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Fig. 10. The varying appearance of a changingrenmient may require a be possible to know exactly where the robot is.aVvoid this

system store multiple representations of each pleleis image (from [229]) : ; :
shows the number of robot “experiences” storedndurepeated traversals of assumption, Churchill and Newman proposed a plastp

a path over a number of months. While most plaegaire 5-10 experiences formulation [15] that explicitly localizes within obot
(shown in blue) some regions require as many dst8wn in red). “experiences” rather than physical locations. A new

Elements of a scene that are moving when the robBxperience is generated each time a robot viditsation that
observes them must be detected and may also bevegmot d0€s not recognize, and the map may implicitigver

[230], [231]. However, there are often semi-stalements
that are not obviously moving but appear and disappver
time. While these elements can simply be removed
unreliable [69], [232] it is also possible that Buelements
may be temporarily useful for localization in sgiecparts of
an environment [233]. For example, in a car parikding the
static elements such as the walls can be far awaly nmt
particularly distinctive, and so are not useful focalization
while the semi-static parked cars are many andtivels
distinctive, and can be used for localization fomatter of
hours or a day, before being forgotten and replalfatiis is

multiple representations of each location, dependin the
difficulty of matching at that particular locatiqeee Fig. 10).
However, unlike the systems discussed previoushe t
multiple representations will not necessarily lédid together
as the same physical place. The plastic map is more
informative if the system can recognize and link reno
experiences together. However, it is a pragmatc@ach that
allows for graceful place recognition failure witlio
catastrophic map collapse.

Retaining multiple representations of each location
increases the place recognition search space andemaease

the case, temporary maps are created when the roHiciency unless only a subset of representatisnssed for

observations do not match the expected resultiseoptovided
static map. The temporary maps are discarded when fail
to adequately match the robot observations overtiphail
consecutive time steps.

The systems presented above [221], [227], [22833]2
were designed for metric systems. Multiple represéms

comparison. Because observations captured at sitiihes
tend to demonstrate similar appearance charaatsriftiture
potential matches can be probabilistically seledteded on
the system’s current localization belief. CarlesaBianco and
Eustice [235] approximated the likelihood of twocadtion
exemplars being “co-observed” within a short timemfe with

can also be generated for appearance-based sysfem@ Chow-Liu tree, while Linegar, Churchill et al.3&] used

multiple training runs are available. Johns and or§h02]
used feature co-occurrence maps generated during
training runs on a 20 km urban road-based datastwtelen
14:00 and 22:00. Localization can then be achiemedhe
same route at times interpolated between the five.r
McManus, Upcroft et al. [120] used multiple traiginuns
through an environment to learn scene signaturéscally
distinctive elements of a place that are also statler
changes in appearance. For each location within
environment, image patches are selected that sqlif
demonstrate both distinctiveness and stability. Eb&ected
patches were described using HOG descriptors [HH used
to train an SVM classifier for each location. Usisgene

signatures for each places allowed 100% correctepla

recognition in a 31 location dataset, while SURRtdiees
performed poorly, particular in rainy and foggy ddions.

If the appearance of the environment is assumetbeto

affected by a series of hidden periodic processpsctral
analysis such as Fourier analysis can be usedewigbrthe
most likely appearance of a location from multiptaining

passes at a particular time in the future. Krajfi@ntanes et

al. [234] learned and modeled these processes awer

environment and demonstrated that this informatiam halve
the number of place recognition errors when logadizhree
months later.

“path memory” to select past experiences as catalida
finatches and improve place recognition without iasieg
computation time.

C. Recognizing places in changing environments

Integrating appearance change into a place recognit
system requires some key alterations to the bgkeferation
process. Firstly, as discussed above, changing@maents
require multiple representations of each placehis is the
tl&%se, a system may select the best map givenrisntisensor
data [227] or it may try to predict the most likelppearance
matches [18], [234]-[236].

Alternatively, the place recognition system may run
multiple hypotheses in parallel. Churchill and Neaw{15]
assigned every saved experience its own localizgrreports
whether or not the robot is successfully localizgthin that
environment, while Morris, Dayoub et al. [221] pmrhed
filtering over possible map configurations as wasl possible
robot poses. Instead of selecting the single map best
matches the current sensor data, the system insietackly
tracks theN best navigation hypotheses in multiple maps,
while pending hypotheses are maintained and swappéd
when an active hypothesis drops below the best ipgnd
hypothesis. Using multiple map hypotheses was tegdato
decrease the mean path error in an indoor offipe@xent by
as much as 80%.

All of the systems described above share an urderly . tactor for place recognition in changing envinents

assumption — that the robot knows where it is sigfitly well
to match different representations of the same timca
together, even if the representations are visufiigimilar. A
map cannot be updated if the system does not knbighw
location to update and, in a changing environmiemhay not

is that topological information becomes more imaottas
incoming sensor data becomes less reliable and diffieult

to match to previous observations [118], [119]h#ts been
observed that matching image sequences ratheirttsdual
images can improve place recognition in generald an
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particularly in changing environments [14], [841.1B], [149],
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and online / offline processing paradigms couldelploited

and image sequences can be integrated with condlitio even by small, cheap mobile platforms. DevelopmantsPU

random fields [237] to identify and if necessaryifyeloop
closures [14].

The place recognition systems that are most sufttess
changing environments exploit the assumption thatslystem
is not just passing through a particular place tlastersing the

hardware and novel camera sensors will inspire cenwcepts
in place recognition as well as improving the efficy and
robustness of existing approaches.

Research in place recognition can also benefit ftbm
ongoing research in object detection and scensifitzgion.

same or a very similar path through the environmenBy exploiting object detections, it is possible l&arn that

SeqSLAM [118] demonstrated that image sequences
perform place recognition in particularly visuatihallenging
environments. The original version assumed a sim#tocity
profile between traversals. Methods to deal with kimitation
include searching non-linear paths as well as tipashs [102]
through the image similarity matrix and using odtmpénput
to linearize the signal [150]. Liu and Zhang [238ed a
particle filter to improve the computation effic@nover the
exhaustive search process and achieved a 10 tipsesi-sip
factor with equivalent performance at 100% precisio
Naseer, Spinello et al. [119] exploited sequentarimation
by formulating image matching as a minimum cosivfl&low
networks are directed graphs with a source nodeaanihk
node, which for path-based place recognition represhe
start of the traversal and the end of the traveesgbectively.

cabjects such as buildings are useful for long-tepface
recognition, objects such as pedestrians shouigrmeed, and
objects such as cars might be useful depending hen
semantic and temporal context. An increased rolkesstrio
structural changes can be achieved by exploitingwkedge
about which objects are dynamic or static and hbwat t
property is depending on the temporal and semantitext —
for example, cars in a parking garage can tempgnarovide
useful place recognition cues. Exploiting the egpieness of
convolutional neural networks by training or fingiing such
networks specifically for the task of place recdigm is a
worthwhile direction for future research.

Visual place recognition systems can also exploittext.
Although places change drastically in appeararieerelative
location of places remains unchanged. This fadhtesgrated

By equating image comparison values to flow cobg tinto belief generation modules by using locatiorions,

formulation found the optimal sequence through

environment. Differing velocity profiles were haadl by
allowing nodes to be either matching or hidden. iy,
Hansen and Browning [239] used Hidden Markov Models
determine the most likely path through an environmesing

the Viterbi algorithm.

VIII. CONCLUSION

Visual place recognition has made great advancteitast
15 years, but we are still a long way from a urseémplace
recognition system for robots that is robust andiehyi
applicable across a range of robotic platforms &ad/ing
environments. Here we highlight several promisingraues of
ongoing and future research that are moving usclmsvards
this outcome.

theecursive filtering and path-based sequences ofjémaand

the dependence on these techniques increases wearidigon

in the visual appearance of the environment inegabhe use
of other sources of contextual information also hhe

potential to improve place recognition capabilitkrowledge
about the time of day, or the current weather doms can
also change how the place recognition system irgeghe
incoming visual data.

Semantic scene context can furthermore limit tharcte
space for place recognition to semantically sim#ieenes to
ensure scalability towards long-term autonomy. Sdina
context can support learning and predicting thengka in a
scene and help increase the robustness againsoemeéntal
condition changes. Semantic mapping also has ttenpal to

reduce memory requirements — imagine a house map on

The most successful approaches to combatting chgngf€duiring words such as “kitchen”, “bedroom”, and

appearance typically do so at the cost of viewpimimariance
or increased training requirements. As discussemveggbas
sensor information becomes less reliable, it can

compensated for by topological information, whiadguires
not only viewpoint invariance at a single pointt kalong a
possibly quite long path. Some potential avenuelsidte using
image patches rather than whole images, as imagdgsa
have much of the condition invariant advantageswvbble

images while allowing some coarse viewpoint invaci, and
investigating the use of deep learning featureskvhiso have
some viewpoint invariant characteristics.

Visual place recognition is benefitting from resgmarin
other fields, particularly the great strides bemghieved in
computer vision in the fields of deep learning, gma
classification, object recognition, video descopti While
techniques such as convolutional neural networksidé on
Big Data and Big Compute, techniques such as dtobdtics

“bathroom” to describe places — and current re$eardopic
modeling, coresets and other semantic compressathaus is
fiready showing promise, as is the use of objextsgh-level
place recognition features.

Finally, what can visual place recognition offer ather
research tasks? By necessity and opportunity, Viplece
recognition has taken up the challenge to solvedition
invariant recognition to a degree that many fieldse not,
albeit under a more tightly constrained task speatibn than
other tasks such as scene interpretation. The iexpergained
in developing robust features, in addressing thakination
of both appearance change and viewpoint changeotret
challenges may have valuable applications both timero
robotic tasks such as object recognition and dlaaibn in
the wild, and a diverse range of other areas inedemote
sensing, environmental monitoring and tasks thajuire
recognition and identification in uncontrolled emriments.
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