
Proceedings of the 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space - i-SAIRAS’14, Montréal, Canada, 17-19 June 2014.

Phobos and Deimos on Mars –
Two Autonomous Robots for the DLR SpaceBot Cup

Niko Sünderhauf*, Peer Neubert, Martina Truschzinski,
Daniel Wunschel, Johannes Pöschmann, Sven Lange, and Peter Protzel

Dept. of Electrical Engineering and Information Technology, TU Chemnitz, Germany
e-mail: firstname.lastname@etit.tu-chemnitz.de

* School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane
email: niko.suenderhauf@qut.edu.au

Abstract

In 2013, ten teams from German universities and re-
search institutes participated in a national robot compe-
tition called SpaceBot Cup organized by the DLR Space
Administration. The robots had one hour to autonomously
explore and map a challenging Mars-like environment,
find, transport, and manipulate two objects, and navigate
back to the landing site. Localization without GPS in an
unstructured environment was a major issue as was mobile
manipulation and very restricted communication. This pa-
per describes our system of two rovers operating on the
ground plus a quadrotor UAV simulating an observing or-
biting satellite. We relied on ROS (robot operating sys-
tem) as the software infrastructure and describe the main
ROS components utilized in performing the tasks. Despite
(or because of) faults, communication loss and break-
downs, it was a valuable experience with many lessons
learned.

1 Introduction

The DLR Space Administration decided in 2012 to
host a national competition called SpaceBot Cup to fos-
ter new ideas and to assess the current state of the art of
autonomous robots for planetary explorations and also for
terrestrial applications. A call for proposals was launched
in October 2012 and ten German universities and research
institutes were selected as participating teams. After the
kick-off meeting in March 2013, the ten teams funded
with €50,000 each had 8 months to prepare a robotic sys-
tem for the SpaceBot Cup held in November 2013. This
paper describes the required tasks, the technical choices
made to build a team of two ground robots and one flying
robot, challenges and performance issues, and the lessons
learned from the competition.

2 The SpaceBot Cup

To simulate a typical exploration scenario, the DLR
used an indoor motocross arena to model a rugged Mars-

Figure 1. : Phobos and Deimos on the rugged Mars-like
terrain during the SpaceBot Cup competition.

like planetary surface, including gravel, fine sand, boul-
ders of different size, trenches and small hills of up to 2
m height with slopes up to 30 degrees. Figure 2 gives an
impression of the area with a size of 36 × 28 meter. Af-
ter one day of on-site preparation, there were two days
of competition. Each team had a single run of one hour
to perform the following tasks: The robots started from a
landing site and had to autonomously navigate the terrain
(obviously without GPS) on a suitable path. Two objects,
a mug filled with water (600g) and a battery pack (800g)
were randomly placed on the surface, one hidden under an
overhang, thus not visible from above. The robot had to
find the two objects, pick them up and transport them to a
base object placed on a steep hill. There, the mug had to
be placed on top of the base and the battery pack had to
be inserted into a recess of the base object. Then the robot
had to return to its landing site with possible new obstacles



Figure 2. : Space Bot Cup Arena. During the competition the blue ambient light was replaced by more neutral colored
spotlight illumination. The red base object is visible in the background on top of the hill.

on its path placed by the jury. The performance measure
was the time to complete the mission with penalty/bonus
times for certain mission tasks. Beside those measures,
the jury had some leeway to subjectively assess the over-
all performance of the system.

Outside the arena was a container simulating a mis-
sion control center from which team members got sensor
data from the robot, but could talk to the robot only during
three five minute checkpoints. The communication had a
simulated delay of 2 seconds in each direction as well as
packet losses and performance degradation.

The SpaceBot Cup focused mainly on the autonomy
of the systems operating in a realistic terrain. Other con-
ditions like temperature, atmospheric pressure etc. were
not considered. Also RGB-D sensors like the Kinect were
allowed and usable due to the indoor setting. The use of
UAVs simulating observing satellites was also not prohib-
ited.

3 System Overview and Mission Plan

Systems operating autonomously in rough terrain
without global localization fail with high probability, to
put it mildly. Thus, our plan always was to use two ground
robots, if not for cooperation then for redundancy (see sec-
tion 4.5 for a discussion on this). Additionally, we used
an autonomously operating quadrotor UAV for providing
aerial images to aid in finding the objects (see section 5
for details). A cubic box at our landing site hosted a
WiFi access point for the communication channel between
the robots and mission control and served as a start and
landing platform for the UAV. AR-Tags on the box aided
our ground robots in a localization relative to the landing
zone if necessary. We designed the whole system to fulfill
the mission completely autonomously. We ran individual
ROS1 cores at each robot and the mission control. No tele-
operation or other user control was planned at any time.
However, the robots should provide the mission control

1Robot Operating System, http://www.ros.org

operators with sensory data to enable them to document
the mission state and to interact with the robots in case of
emergency. The artificial delay on the network commu-
nication rendered standard TCP protocols unusable due
to the required acknowledge after each package. To en-
force autonomy and prevent tempering, only one port was
allowed for communication which made standard ROS
communication difficult. Obvious workarounds like VPN
tunnels were not allowed. To comply with the contest
rules, all communication between the robots and mission
control was serialized, tunneled through a single network
port and parsed at the opposite end. This also enabled the
communication between the different roscores.

The mission plan was implemented in a hierarchi-
cal state machine (section 4.4) and uses a navigation sys-
tem based on a danger map (section 4.2) and modules for
fully automated object detection and manipulation (sec-
tion 4.3).

4 Phobos and Deimos: The Ground Robots

4.1 The Hardware Platform

The mission scenario described above called for an
extremely capable robot platform. After a careful consid-
eration of the commercially available platforms, we de-
cided to use two Summit XL rovers from the Spanish man-
ufacturer Robotnik2 as a platform for our own extensive
hardware modifications and systems integration. See Fig.
1 for illustration and Table 1 for technical specifications.
The skid-steered platforms are capable of carrying up to
20 kg payload. With their independent wheel suspension,
the large contoured tires, and the powerful 4 × 250 W
wheel hub drives, these robots proved to be a good choice
for the type of terrain encountered during the competition.
We were the only team that deployed a team of two ground
robots in the competition.

2http://www.robotnik.es/en/products/mobile-robots/summit-xl



Table 1. : Technical specifications of the two ground
robots

Attribute Value

Dimensions 693 x 626 x 985 mm
Weight 47 Kg
Speed 3 m/s
Batteries 8x3.3V LiFePO4
Traction motors 4x 250 W brushless servomotors
Max. climbing angle about 45°
CPUs Intel Core i7-3770 and i5-3330
Price about €15,000

Figure 3. : Danger map with color-coded traversability
costs (high costs are shown in red) and the paths planned
by the global (visualized in green) and local planners.

4.2 Danger Map based Navigation
The traversability of the terrain was modeled follow-

ing an approach similar to [3]. From RGB-D data col-
lected by an Asus Xtion sensor mounted on a pan tilt unit,
we create a digital elevation model with a grid resolution
of 5 cm. The traversability of each cell is estimated based
on a danger value that is calculated from the terrain slope
in the vicinity of each cell and the maximum step height
(i.e. the maximum height difference) in this cell. The
maximum traversable slope angle and step size is deter-
mined according to the capabilities of the robot’s loco-
motion system. The resulting danger map could be used
directly as a cost map for the path planning subsystem.

To plan and follow a path to a goal location, we ap-
plied a hierarchical approach using a global and a local
planner. The danger map served as a cost map for both
of these planners, which were implemented as simple A*
planners. In future work we want to replace these by a
more sophisticated Field D* approach. The global planner
first created a path from a start pose (typically the current
robot pose) to the desired goal pose (e.g. the next explo-

Start
Goal

Local goal

Area of high traversability costs

Current robot position

Global path

Local path

Figure 4. : Two path planners work hand in hand to move
the robot towards its goal: First the global planner creates
a path based on the current knowledge of the terrain in
the danger map. It then commands the local planner to
follow this path. While creating motion commands for
the motors, the local planner constantly assesses the up-
dated danger map and reacts to obstacles or areas of high
traversibility costs. A local path is generated that can lo-
cally diverge from the global path but attempts to follow
it as closely as possible. A variety of recovery behaviors
(see section 4.4) ensures that the robot reaches its goal.

ration waypoint) so that the accumulated costs from the
danger map are kept small. The local planner on his part
tried to follow this global path and created the necessary
motor commands, (forward velocity and turn rates). The
local planner could also re-plan the trajectory on a local
scale, e.g. when obstacles occurred that were not known
to the global planner. This situation typically occurs when
the robot enters a previously unknown area during the ex-
ploration. In particular, the local planner was called with
2 Hz and selected a local goal point on the global path
within a maximal distance of 2 meters from the current
robot position. It then generated a local path to that inter-
mediate goal point.

Motion commands v and ω were continuously gener-
ated using a simple proportional control strategy that first
turned the robot in place towards the next local waypoint
and generated a forward velocity only if that waypoint was
within a 45 degrees bearing:

v = vmax · cos(2α) : cos(α) > π
4

v = 0 : otherwise
ω = ωmax : cos(α) > 0.5
ω = sin(α) ∗ ωmax : otherwise

where α is the relative bearing from the robot to the
next waypoint on the local path.

4.3 Mobile Manipulation
One of the mission goals was to find, grasp, and trans-

port two objects (a battery pack of 800 g and an open mu
gfilled with 400 ml water, see Fig. 6) to a third one, and
assemble all objects there. Since none of the commer-
cially available arms fulfilled the combined constraints of
required payload, maximum size, and price, we decided
to design an 6 DOF manipulator arm specifically for our
needs. The arm is powered by six Dynamixel servo mo-
tors (two MX-106 and four MX-64). Dynamixel servos



Figure 5. : The custom made 6 DOF manipulator arm
with its task-oriented gripper. For transportation of the
objects the robots had additional racks to avoid holding
the objects during large robot movements and to free the
gripper for transportation of multiple objects.

are lightweight, strong and easy to use motors that are
fully ROS compatible. They are controlled through the
Dynamixel packages3. ROS MoveIt!4 is used to calculate
the kinematics based on an URDF model of the manipu-
lator. A custom ROS node implements the interface be-
tween planned manipulator trajectory (given as individual
joint state sequences) and the Dynamixel servo interface.
See Fig. 7 for an overview.

The mobile manipulation task is based on a fully au-
tomatic detection of the objects and their 6D pose. 3D Ge-
ometry and color of the objects were known in advance.
The objects do not provide significant texture that could be
used for detection. To simplify the object detection task,
striking object colors were chosen by the competition or-
ganizers. We used an Asus Xtion camera as visual sensor.
This sensor had serious problems with color saturation of
the non Lambertian object materials in combination with
spotlight illumination (as it was the case during the con-
test). This limitation of the sensory input also restricted
the benefits of robust colorspace models like normalized
color rgb or l1l2l3 [4]: the overexposed yellow battery
pack shows to large parts the same white color as the over-
exposed sand. To overcome this limitation, we quantized
the colorspace into classes with different probabilities for
belonging to the object to search. An initial (offline) cal-
ibration step assigns high probabilities to the spectrum of
object colors and additionally lower (but non zero) proba-
bilities to possibly overexposed image regions. Of course,
this introduces a lot of false positive indicators for de-
tections when relying only on the object color. To deal

3e.g. http://wiki.ros.org/dynamixel controllers
4http://wiki.ros.org/moveit

Figure 6. : The three mission related objects. The yellow
battery pack and the blue mug had to be searched, picked
up and transported to the red base object. The battery pack
had to be placed into a slot. The blue mug was filled with
water and had to be placed on a scale on top of the base
object. After placing both objects, releasing a switch on
the base object should indicate the completed manipula-
tion task.

with high false positive rates object detection pipelines
typically create a discrete set of hypotheses followed by
a hypotheses verification step, e.g. [1]. Such pipelines
perform well for detection of the 3D pose of textured or
complexly shaped objects in arbitrary poses.

While the objects in the SpaceBot scenario do not
provide texture or a sufficient complex shape to detect
salient 3D keypoints, their pose in the world is limited
to the 2.5 dimensional ground plane. In fact, the objects
were known to stand on flat areas with sufficient space
to place the robot at the same level (at least from one
side) but with possible overhangs over the objects. We
formulate the given object detection problem in terms of
a template matching in a projective space: Exploiting the
knowledge about possible object poses we can reduce the
search space for objects to a projective 2D plane given
by the robots footprint coordinate systems XY plane. We
deduce several projective models for each object from its
known 3D geometry. Using an orthogonal projection to
the 2D ground plane, we reduce the search space for each
projective model to the three dimensional (x, y,Θ) space
(2D position and orientation of the model). The number
of models for an object depends on the number of projec-
tive views that are sufficiently different (keeping in mind
that distinction between different orientations and shift are
handled by the search space). E.g. for the box shaped bat-
tery object, these are typically the three different rectangu-
lar sides. Reducing the search space to the three (x, y,Θ)
dimensions and the few models, we can apply an exhaus-
tive search over a sufficiently fine grid (e.g. 0.5 cm and
5 degree in the projective plane) of all object poses. We
use a normalized correlation measure on the quantized ob-
ject colors of the current projected view and the projected
object model. To reduce false matchings in large over-
exposed image areas, we surround the projected object
model with negative values for the correlation computa-
tions.

We use a set of predefined grasping points for han-



robot model
(URDF)

arm interface
(ActionServer)

GUI
(RViz)

MoveIt!

robot state
publisher

ROS parameter server

tf

hardware
interface

(Action
Server)

Dynamixel
motor 
sensor

Dynamixel
motor 

controller

legend:

MoveIt! module
Dynamixel module
other ROS module
own module 

Figure 7. : Overview of MoveIt! integration. MoveIt!
computes kinematics based on a URDF model of our cus-
tom made arm. Further, we had to provide two ROS Ac-
tionServer. The first implements actions to interface the
arm (e.g. move the arm to a position). The second Action-
Server contains the interface to the hardware (in our case
the Dynamixel servomotors) and executes the planned tra-
jectories.

dling the objects. After successful detection of an object,
the robot tries to approach the object to reach a position
from where it can grasp it. Therefor we use a sequence of
predefined approach positions that are input to the GoTo-
Point behavior presented in the following section. At each
point of the sequence we try to verify our observation with
the current camera view and start recovery behaviors if the
detection gets lost.

4.4 Hierarchical Control Architecture
The control architecture of the robot was imple-

mented as a hierarchical task-level state machine using
the SMACH5 package of ROS. SMACH allows the easy
creation of relatively complex hierarchical state machines
that support concurrence and provides full access to the
underlying ROS message passing concepts such as topics,
services and actions. A special focus of our control archi-
tecture design lay on the creation of contingency modes
and recovery behaviors on all relevant levels. To accom-
plish this, we had to extend the original SMACH container
modules to support the concepts of timeouts or adaptive
transitions.

We used timeouts for all blocking tasks to prevent the
robot from getting stuck forever in a state while waiting
for the arrival of a message or the occurrence of an event.
Timeouts also kept the robots from trying to accomplish a
goal that could not be reached despite all recovery behav-
iors. Such recovery behaviors were activated whenever
the robot failed to fulfill a given task (e.g. reach a way-
point, grasp an object).

Adaptive transition nodes ensured that the system
could escalate its recovery efforts from a simple retry (e.g.
try to grasp again) over a new approach (e.g. move to

5http://wiki.ros.org/smach

another position and try to grasp from there) to a com-
plete abort or even future prohibition of a given task (e.g.
grasping failed definitively, remember and never attempt
to grasp this object again).

Fig. 8 illustrates the general layout of a behavior,
using the simple GotoGoal behavior as an example. It
is implemented as a SMACH concurrence container and
comprises three SMACH states executed in parallel: Two
of these states simply wait for an event (timeout or an
operator-issued emergency stop) to occur and would then
terminate the whole behavior. The core functionality calls
the global planner and uses the local planner to follow the
returned path to the goal point. If any error occurs, the
recovery behavior is triggered. This contains a decision
node that remembers how often the recovery was triggered
while trying to reach a specific goal point. Depending on
this count, different recovery behaviors are then activated,
escalating from a simple retry over clearing and rebuilding
the danger map to trying to reach the goal in a purely reac-
tive way without using a pre-planned path. If all these fail,
the recovery behavior declares the goal unreachable and
terminates the GotoGoal behavior with a failure. Higher
behaviors in the hierarchy outside this module can then
decide how to proceed by triggering their respective re-
covery behaviors and so on.

4.5 Cooperation
In our initial concept we envisioned two heteroge-

neous ground robots with very distinct capabilities and
tasks. One platform was intended to be small and ag-
ile and responsible for the rapid exploration of the en-
vironment, including mapping and object identification.
The second, bigger platform was planned to carry the
custom-made arm and perform the required manipulation
and transportation tasks. This concept, although elegant
and appealing, relies heavily on the availability of a stable
communication channel between both robots. In addition,
a dedicated cooperation layer must be introduced in the
(now distributed) control structure that coordinates data
sharing and task allocation between both robots. Such
concepts have been successfully demonstrated in complex
robot tasks, e.g. [7], [5] and the cooperative localiza-
tion and sharing of pose graphs over unreliable and low-
bandwidth channels has been researched in [8].

However, after careful considerations we decided to
abandon the initial concept of strongly cooperating het-
erogeneous robots for the following reasons:

1. We assessed the risk of one robot being disabled dur-
ing the competition (due to sensor failures, algorith-
mic malfunction or operator error) to be high. For
the sake of full redundancy we therefore decided to
build two identical robots.

2. We found the support for multi-robot teams is cur-
rently underdeveloped in ROS. Even modules for ba-



GotoGoal

WaitForTimeout WaitForEmergencyStop

failed preempted stopped succeeded

Planners
PlanGlobalPath

FollowPath Recover

succeededpreempted failed

s:
p:
a:
f:

succeeded
preempted
aborted
failed 

s s s

s

s s a
a

p p p

p

p p f

f

Figure 8. : Simplified view of the goto behavior implemented in SMACH. We use three concurrent containers (WaitFor-
Timeout, WaitForEmergencyStop, and Planners). The first prevents the behavior to get stuck forever, trying to reach an
impossible goal. The second captures the event that the operator issues an emergency stop. The third behavior contains
the actual functionality and comprises the global and local path planners (PlanGlobalPath, FollowPath) and a complex
recovery behavior that is triggered whenever a problem or error occurs in one of the two other states.

sic tasks such as data sharing between ROS cores
running on multiple robots were not standardized or
assessed to be not reliable and stable enough.

3. The default communication channel between robots
(2.4 GHz Wifi) was assessed to be not reliable and
stable enough during the competition. This is partly
due to the characteristics of the reproduced Marsian
surface with hills, ditches and the resulting signal
shading, but also due to the high risk of interference
with the ubiquitous personal devices such as smart
phones and tablets of the spectators in the arena or
simply the robots of the other teams. A second com-
munication channel at 866 MHz (e.g. using serial
866 MHz XBee modules) could be a partial solution
for future events, although allowing only low band-
widths.

4. The communication channel between the robots and
the mission control station was designed to be de-
layed and expected to be unreliable. Since we wanted
to limit operator interactions to emergency situations,
an additional layer in the control hierarchy would
have been necessary to coordinate both robots. This
was beyond our scope for the SpaceBot Cup 2013 but
surely is an important direction for future work.

5 The Quadrotor UAV

We also deployed an autonomous UAV (an AR.Drone
2, as can be seen in Fig. 9a) to support the robots on the
ground with the task of finding the mission critical ob-
jects. The AR.Drone 2 is a commercially available quadro-
tor system produced for the mass market. It is designed to
be used as a toy, but has many features which makes the
system suitable for research applications. For example in
[6] the system is extended by another on-board embedded
PC for achieving autonomous navigation. The system is
about 63 cm in diameter with its protecting hull and has
an overall weight of 456 g.

Compared to the usage of other quadrotor systems,
the AR.Drone benefits from sophisticated flight control
algorithms, executed on the onboard PC, which achieve
stable hovering with position stabilization in absence of
a global measurement system like GPS. An in-depth de-
scription regarding these algorithms and other hardware
details can be found in [2].

As with the ground robots, the AR.Drone control ar-
chitecture is based on a SMACH state machine. Due to
limited processing power of the on-board PC, the state ma-
chine including the ROS framework runs on a separate PC
within the box at the landing side and communicates with
the quadcopter via Wi-Fi. For interfacing the AR.Drone
communication protocol to the ROS framework, we used
the ardrone autonomy6 package. Basically there are two
main states implemented: a manual mode for testing pur-
poses and an automatic mode.

The automatic mode implements two full 360° cam-
era scans on two different altitude levels above the deploy-
ment site. While the position hold functionality of the
AR.Drone is sophisticated, it is not sufficient for an ac-
curate position hold over the deployment site, as needed
for the 360° camera sweep, so we used a special pat-
tern called oriented roundel already recognized by the
AR.Drone’s on-board PC. As soon as recognized, the in-
ternal sensor readings respond with information, where
the special tag was found within the bottom camera im-
age. These coordinates are given in a range of 0 to
1000 for both image dimensions, regardless of the cam-
era resolution. We used this information for approximat-
ing the metric position of the pattern underneath the quad-
copter through (1), which is exemplarily given for the x-
direction:

x =

((
2 · xAR

1000
− 1

)
· tan

(FoV
2

)
− arctan φ

)
· h (1)

6http://wiki.ros.org/ardrone autonomy



(a) (b) (c)

Figure 9. : (a) The AR.Drone 2 as we used it during the competition. (b) Live image from the quadcopter while hovering
over the deployment site. (c) Magnified image part which shows one special target – the blue spot.

where xAR is the tag’s coordinate and h is the quadro-
tor’s height above ground in metre, detected by its sonar
sensor. Additionally, FoV stands for the bottom camera’s
field of view which is about 49°×35° and φ is the absolute
roll angle of the quadrotor. Based on the calculated metric
position information, a simple PD-Controller is used for
position hold. Due to the latency induced by the Wi-Fi
connection, the performance is not the best, but is suffi-
cient for our needs.

By using the described flight functionality, we could
get an initial clue where to search for the mission critical
objects. In order to achieve this, we had to tilt the front
camera downwards about 30° to cover more of the com-
petition area and modify the AR.Drone’s ROS interface to
get the maximum image resolution. An example of the
aerial view is shown in image 9b. As can be seen, the im-
age quality is badly reduced. This happens automatically
if the Wi-Fi connection is not optimal.

After marking an object within the images, several in-
formation and assumptions could be used to guess the final
position of this object:

• The yaw orientation of the quadrotor B relative to
the special tag at the deployment site results in the
rotation matrix RWB, whereW marks a world frame
originated in the tag.
• The current altitude h of the quadrotor results in the

translation tW
B

between quadrotor and world frame.
• We make the assumption that the area is a plane.
• We make use of the intrinsic camera parameters K

and the extrinsic calibration between the quadcopter
and the camera RBC – composed of the downward tilt
angle.

By using the assumptions made, we can calculate the
direction vector for the homogeneous image coordinate ũ
and rotate it into the world frame, as shown in (2). After-
wards we can calculate the intersection point pWobj of the
line-plane intersection between the direction vector pW
and the x-y-plane as shown in (3).

pW = RWB · RBC ·K−1 · ũ (2)

pWobj = tW
B
−

h
pWz
· pW (3)

Notice that this is an approximation, but good enough
for an initial guess of the objects’ positions.

6 Lessons Learned

6.1 A rugged robot is good, but worthless when
blind or paralyzed.

Sometimes it is that simple: Rugged mechanics facili-
tate autonomy. This became evident for autonomous nav-
igation of our ground robots in comparison to the much
more fragile constructions of other contestants.

For existing active 3D sensors there are known (and
possibly unknown) conditions under which they do not
work properly, e.g. transparent materials, light absorbing
materials, or intense back light. We relied on a single type
of sensor (Asus Xtion) for obstacle avoidance. This prob-
ably caused a collision of one robot with an missed ob-
stacle followed by an accidental release of the emergency
stop and an interruption of the motor power.

6.2 Do not rely on a working communication.
As it turned out, our initial apprehensions about the

unreliable communication between the robots and the op-
erators in the mission control station proved to be true
during the competition. All teams experienced massive
problems when trying to send commands to their robot or
receive data from it. This lead to the very unpleasant sit-
uation that some the participating teams could not even
send a start command to their robot.

In anticipation of this situation we applied our strat-
egy of contingency behaviors even to the seemingly sim-
ple task of starting the robot: The robot would start exe-
cuting its mission plan after a) it received a start command



from the operators or b) two minutes after an external but-
ton on the robot was pressed by the field crew that carried
the robot into the arena, or c) 10 minutes after booting the
robot’s main computer. This threefold safety ensured that
all of our three robots did successfully begin to execute
their mission plans, in contrast to some other robots that
remained motionless at the deployment site. Since we did
not have any data connection to the ground robots until ap-
proximately 10 minutes into the mission, the robots were
started by the 2 minutes watchdog timeout.

Unfortunately, the faulty communication prevented us
from sending a crucial command to the second ground
robot Deimos after Phobos was disabled due to a colli-
sion with an obstacle later in the mission run. Deimos
was meant to remain in a waiting position to not interfere
with Phobos while Phobos executed the mission plan of
exploring, searching for objects etc. We planned to ac-
tivate Deimos whenever we felt that Phobos experienced
difficulties or had eventually moved far enough away from
the deployment site. This decision proved to be unfortu-
nate in hindsight. The activation of Deimos relied com-
pletely on the communication with the mission control
crew. Because this introduced a single point of failure,
Deimos could not contribute to the success of the mission.

We feel our assessment of keeping the human oper-
ators out of the loop as much as possible was confirmed
by the experiences made during the SpaceBot Cup. At no
point in the mission should a robot be solely dependent
on a human operator to take control or even only send a
simple start command.

6.3 Anticipate the ROS effect.

We coined the informal term ROS effect to describe
our mixed feelings about using and being dependent on
ROS for a long-term project on a non-PR2 robot. ROS is
in our eyes still the best middleware, ecosystem and algo-
rithm collection for mobile robotics available. It is, how-
ever, not a production-ready and stable framework. The
diffuse feeling that “there must already be a working mod-
ule in ROS” that implements a certain task the robot has
to accomplish, often gives way to disappointment as the
module is not maintained anymore (the PhD student grad-
uated a year ago), does therefore not compile anymore, is
not, badly, or incorrectly documented, or breaks after de-
pendent modules are updated over night. Unfortunately
this was a re-occurring pattern during the design and im-
plementation phase for the SpaceBot Cup.

Unfortunately we cannot claim to have contributed to
improving this situation since we did not release our code
to the community as well-maintained modules for ROS.
We acknowledge the effort it takes to create usable open
source software modules and the difficulties to maintain
them over a long time.

7 Conclusions

We have seen our systems working well in principle.
They worked (mostly) in the lab and (sometimes) in the
competition. The problem is robustness. The hardware
of the rovers was fine for this purpose, sensors can be
improved with current technology (better cameras, laser
scanners), ROS has some major software engineering is-
sues, but is not the bottleneck. One of the main hurdles in
achieving more robust autonomy is poor exception han-
dling. Handling exceptions on all levels of the control ar-
chitecture via recovery behaviors and contingency modes
is the key to a robust and truly autonomous long-term op-
eration of any robot. While the actual mission plan is often
rather straight forward, designing and implementing these
exception handling routines in the control architecture is
very tedious. SMACH in its current form (even with our
extensions) is not well suited to control the behavior of a
robot in a complex environment with many possible error
sources. Another way to increase overall robustness is to
use multiple robots that cooperate in good times but are
able to work independently if other robots or communi-
cations fail. Here too, the key is exception handling and
improved situational awareness, and we will concentrate
on these issues in future work. The SpaceBot Cup -as all
competitions with a firm deadline- boosted our productiv-
ity and we hope to present some new ideas at a possible
SpaceBot Cup 2015.

References
[1] Aitor Aldoma, Federico Tombari, Johann Prankl, Andreas Richts-

feld, Luigi di Stefano, and Markus Vincze. Multimodal cue inte-
gration through hypotheses verification for rgb-d object recognition
and 6dof pose estimation. In ICRA, pages 2104–2111. IEEE, 2013.

[2] Pierre-Jean Bristeau, Françis Callou, David Vissièe, and Nicolas Pe-
tit. The Navigation and Control Technology Inside the AR.Drone
Micro UAV. In 18th IFAC World Congress, pages 1477–1484, Mi-
lano, Italy, 2011.

[3] Annett Chilian and Heiko Hirschmüller. Stereo camera based navi-
gation of mobile robots on rough terrain. In Proc. of Intl. Conf. on
Intelligent Robots and Systems (IROS), 2009.

[4] T. Gevers and A. Smeulders. Color based object recognition. Pattern
Recognition, 32:453–464, 1997.

[5] John G. Rogers III, Carlos Nieto-Granda, and Henrik I. Christensen.
Coordination strategies for multi-robot exploration and mapping. In
ISER, pages 231 – 243, 2012.

[6] Jacobo Jiménez Lugo and Andreas Zell. Framework for Au-
tonomous On-board Navigation with the AR.Drone. Journal of In-
telligent and Robotic Systems, 73(1 – 4):401 – 412, 2014.

[7] Edwin Olson, Johannes Strom, Ryan Morton, Andrew Richardson,
Pradeep Ranganathan, Robert Goeddel, Mihai Bulic, Jacob Cross-
man, and Bob Marinier. Progress towards multi-robot reconnais-
sance and the MAGIC 2010 competition. Journal of Field Robotics,
29(5):762–792, September 2012.

[8] Jeffrey M. Walls and Ryan M. Eustice. An exact decentralized co-
operative navigation algorithm for acoustically networked underwa-
ter vehicles with robustness to faulty communication: Theory and
experiment. In Proceedings of the Robotics: Science & Systems
Conference, Berlin, Germany, June 2013.


	Introduction
	The SpaceBot Cup
	System Overview and Mission Plan
	Phobos and Deimos: The Ground Robots
	The Hardware Platform
	Danger Map based Navigation
	Mobile Manipulation
	Hierarchical Control Architecture
	Cooperation

	The Quadrotor UAV
	Lessons Learned
	A rugged robot is good, but worthless when blind or paralyzed.
	Do not rely on a working communication.
	Anticipate the ROS effect.

	Conclusions

