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ABSTRACT

Sensor fusion by incremental smoothing in factor graphs
allows the easy incorporation of asynchronous and de-
layed measurements, which is one of the main advan-
tages of this approach compared to the ubiquitous filter-
ing techniques. While incorporating delayed measure-
ments into the factor graph representation is in principle
easy when the delay is known, handling unknown delays
is a non-trivial task that has not been explored before in
this context. Our paper addresses the problem of per-
forming incremental sensor fusion in factor graphs when
some of the sensor information arrive with a significant
unknown delay. We develop and compare two techniques
to handle such delayed measurements under mild con-
ditions on the characteristics of that delay: We consider
the unknown delay to be bounded and quantizable into
multiples of the state transition cycle time. The proposed
methods are evaluated using a simulation of a dynamic
3-DoF system that fuses odometry and GPS measure-
ments.

1. INTRODUCTION

While Bayesian filtering techniques like the extended
or unscented Kalman filter are unarguably the method
of choice for many applications of sensor fusion, there
are certain situations where incremental smoothing ap-
proaches based on inference in factor graphs perform sig-
nificantly better. Especially in the case of highly non-
linear systems, we can expect such optimization-based
smoothing approaches to yield more accurate results than
filtering methods, due to the incremental nature of the
optimization that allows repeated linearization. A second
advantage is that delayed sensor messages can be incor-
porated very easily. Proper processing of such delayed
information is of importance in applications involving
decentralized sensor networks, or in vehicle-to-vehicle,
or vehicle-to-infrastructure communication in the auto-
motive or aerospace domain. All these systems have to
incorporate information from external sensors that have
to be transmitted over a communication channel where
varying delays have to be expected.

Filtering approaches have difficulties in correctly incor-
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Figure 1: The problem addressed in this paper: The state of a
vehicle x; is estimated from frequent odometry measurements
(yellow), a state transition including a motion model (blue), and
comparatively rare GPS measurements (green). This task is
solved within a factor graph framework, applying incremental
inference using the iISAM?2 [1]] approach. At time ¢, a new GPS
measurement arrives, but the sensor measurement was delayed
by an unknown time 0 < ¢ < dmax. It is not clear how the new
factor (green) can be incorporated into the factor graph, since it
is unknown to which state variable it should be connected.

porating such delayed measurements, since they only
keep track of the most recent state estimate and have
to filter backwards in time, correct the prediction with
the new sensor data and then filter forwards again. This
problem has been addressed early in the literature e.g. by
the classical forward-backward-smoother of Rauch, Tung
and Striebel [2]], but is still under consideration today,
as recent papers like [3} 4} 5] show. In a factor graph-
based framework, the process is much more straightfor-
ward. Incorporating that newly arrived, but delayed sen-
sor data corresponds to inserting an additional node along
with its factors into the factor graph representation of the
problem, which can be done efficiently online [6].

Approaches for efficient inference in Gaussian factor
graphs have been successfully applied to solve large-scale
SLAM problems (Simultaneous Localization and Map-
ping, e.g. [7, 8] ) for several years now. It has been
only recently that advances in the field of incremental in-
ference in such graphs led to the first demonstrations of
an adaptive-lag smoother for incremental sensor fusion
based on factor graphs. This work by Indelman et al. [9]
builds upon the iSAM2 algorithm [1f] that uses a special
data structure, called the Bayes tree, to perform efficient
incremental smoothing in an adaptive-lag manner.

Although [9]] and [6] demonstrated the incremental fu-



sion of asynchronous, delayed sensors in factor graphs,
the exact delays of the measurements were assumed to be
known. Often however, the measurement delay will be
unknown to the system, or at least only uncertain knowl-
edge will exist. This situation occurs e.g. when the sensor
data is communicated over a channel that can not guaran-
tee or specify the transmission lag, or when the data is
preprocessed and thus delayed before any synchronized
timestamping occurred. Often, sensors do not support
proper time synchronization with the host that performs
the sensor fusion or the host runs a non-real-time oper-
ating system and cannot reliably timestamp the received
data. In any case, it is not known with certainty, when
a measurement z; received at time ¢ was really taken by
the sensor. This unknown measurement time 7 is given as
7 =t — § where ¢ is the unknown or uncertain delay we
are interested in, as illustrated in Fig. E} If not handled
properly, these delays will cause systematic errors in the
estimated variables.

Although the problem of sensor fusion with uncertain or
unknown time delays has been addressed in the context
of filtering before (e.g. [10, [11} 12, [13]]), to the best of
our knowledge the problem has not yet been considered
in the context of graph-based sensor fusion.

We start by reviewing the basics of factor graph-based in-
ference in the next section. In the following we consider
three different approaches of how delayed measurements
can be incorporated into a factor graph for incremental
sensor fusion if the delay ¢ is unknown. We will then
evaluate and compare these approaches using a simula-
tion of a 3-DoF vehicle.

2. FACTOR GRAPHS FOR PROBABILISTIC ES-
TIMATION

In a general probabilistic estimation problem, we are in-
terested in the distribution over a set of state variables
X, given measurements or prior knowledge Z. In other
words, we want to know the conditional probability dis-
tribution P(X|Z). Such a distribution can be factored
into a product expression

P(X|Z) = HP (X Z)) (1)

where X; C X and Z; C Z are subsets of X and Z
respectively, according to the dependency structure be-
tween the hidden variables X and the given evidence Z
(e.g. measurements or a-priori knowledge). Such a fac-
torization can be expressed with a factor graph.

Factor graphs are bipartite undirected graphs and have
been proposed by [14] as a general tool to model fac-
torizations of large functions with many variables into
smaller local subsets. Since factor graphs are bipartite
by definition, they contain two sets of nodes: one for the
hidden variables and the other for the probabilistic rela-
tions (the factors) between them.

Consider the example in Fig. For convenience, the
variable nodes are always illustrated larger than the (col-
ored) factor nodes. Notice how a factor can connect two
variables, like the state transition factors illustrated in
blue. Other factors are unary, i.e. they represent sensor
measurements or prior knowledge, like the yellow odom-
etry factors or the green GPS-position factor.

2.1. Finding the Maximum a Posteriori Solution

The maximum a posteriori (MAP) estimate of the distri-
bution P(X|Z), i.e. the most likely variable configura-
tion X'* given the data Z, is formalized as an optimiza-
tion problem of the form

X* = argmax P(X|Z) = argmax [ [ Pi(Xi|Zi) (2)
X X i

If the single factors P; are Gaussian, they are of the gen-
eral form

H(??vzlz)*nexpfflley( V215 3)
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where el-(.)E'i, Zi) is a problem-specific error function.
Notice the three different types of specific error functions
in the graph depicted in Fig. [] that contain error models
for state transition (e®), odometry measurements (e°%°),
and GPS position measurements (€°FS).

Using relation (3] and taking the negative logarithm, we
can transform (2) into

= argmln Z lle: (X, ||z 4)

which is a least squares optimization problem, since we
seek the minimum over a sum of squared terms.

Such problems can be solved using a variety of methods
like Levenberg-Marquardt, Gauss-Newton or Powell’s
Dog-Leg. These approaches iteratively solve the prob-
lem by repeatedly linearizing it and updating the current
estimate of X'* until convergence. At their heart, these
methods rely on a factorization (either QR or Cholesky)
of the Jacobian associated with the factor graph. Special-
ized solvers that exploit the sparse nature of the factoriza-
tion (i.e. the sparse structure of the Jacobians) can solve
typical problems with thousands of variables very effi-
ciently. Examples for convenient C++ frameworks that
contain such solvers and can be easily applied to a num-
ber of different problem domains are g20 [8] or GTSAM
[L5]].

2.2. iSAM2 - Incremental Inference in Factor
Graphs

In general, factor graph problems can be either solved
in batch mode or incrementally. The difference is that a



batch solver uses all available measurements and solves
the complete graph at once. In contrast, incremental
methods are able to efficiently update the graph (i.e. in-
corporate new measurements) and calculate a new esti-
mate online, after each update step. Such incremental
solvers have been explored by Kaess et al. who intro-
duced the iISAM [[/] algorithm (incremental smoothing
and mapping) and more recently iSAM2 [1]].

Their key insight was that the sparse QR or Cholesky
factorization that lies at the heart of batch solvers like
Levenberg-Marquardt or Gauss-Newton is equivalent to
converting the factor graph into a Bayes net via an elimi-
nation algorithm. The resulting Bayes net can be further
converted into a new data structure coined the Bayes tree
[16] by discovering the cliques in the Bayes net. This
tree structure allows particularly easy and efficient incre-
mental updates and inference. That is, new factors can be
added and a new updated estimate X'* is calculated where
only the necessary parts of the tree are re-evaluated.

For more details we have to refer the reader to [1]] which
gives an elaborate description of iISAM2 and the Bayes
tree.

3. INCORPORATING MEASUREMENTS WITH
UNKNOWN DELAY IN FACTOR GRAPHS

After the short review of factor graph-based inference in
the previous section, we now address the core topic of
our paper and explore how delayed measurements can be
incorporated into the factor graph framework when the
delay is not exactly known. We will first set out the con-
sidered scenario before proposing a solution in the fol-
lowing.

We consider a dynamical system with system state x; =
(z,y,0,v,w)7 that evolves over time by following a
CTRV (Constant Turn Rate and Velocity) model. An
odometry sensor generates measurements u; = (v,w)"
with a measurement rate of 1/Apg,. Therefore, every
time a new odometry measurement u, arrives, we gener-
ate a new state variable x; and connect it to the odometry
measurement factor and to its predecessor X;_a,,, via a
CTRV state transition factor. Both factors are illustrated
in Fig. (1} where the state transition is depicted as a blue
node, while the odometry measurement factors are shown
in yellow. The same color code will be used in the fol-
lowing figures.

In addition to the odometry measurements, we receive
absolute position measurements z7 = (,y)" at a slower
rate 1/Agps. Such a measurement z] is received at time
t but was created by the sensor at time 7 = ¢ — §;. That
is, it was delayed by a lag d;, before it was received and
timestamped by the sensor fusion subsystem. Notice that
we denote the delay J; with a time index since the delay
may not be constant over time.

Let us now assume for a moment that the delay J; is
known to the system. In this case, we can express the

optimal (maximum a posteriori, MAP) configuration of
system states X conditioned on the odometry measure-
ments U and position measurements Z to be

X" = argmax P(X|U, Z) 5)
X
The conditional probability P(X|U, Z) can be factored
into
P(X|U,2Z) HP (x¢|ug) - P(x¢|x¢-1) HP (x+|27)

(6)
The MAP estimate is then found by taking the negative
log and assuming all distributions to be Gaussians:

X = arg)r(ninz eIz + Y lleflla + > eS™II%
t t T

(N
This is a nonlinear least squares optimization problem
that we solve and update incrementally using iSAM?2 [[1]].

The error function of the state transition factor is given
by
st — fCTRV (Xt—l) —x; (8)

where is the motion model.The odometry factor
cost function is simply

fCTRV

edl0 = X,Ev’w] —w 9
where x/"“) = (v;,w,)T. Similar, the GPS factor cost

function is defined as

eGP — xlmul _ g7 (10)

While the MAP estimation problem in (7)) can be solved
easily and efficiently by incremental solvers like iISAM?2
or batch solvers like gzo, it is non-trivial to set up the fac-
tor graph when the exact value of the delay ¢, is unknown.
As was illustrated in Fig. [T} it is unclear to which state
variable the measurement factor should be connected.

Let us consider that only the maximum possible delay
time dmax 1S known, and that §; can be assumed to be
quantized to a multiple of the state transition cycle time
Ag. So formally it is known that

6t:n'Ast|0§6t§6maX7nez (1)

The quantization assumption is valid if Ay is small. In
many applications, internal sensor measurements (e.g.
IMU or odometry) will arrive with high rates. Even if
such high-frequency measurements are not available, it is
always possible to create new state variables at arbitrary
high rates, as long as a state transition function can be
defined over arbitrary short time intervals. We therefore
see that the quantization assumption does not pose severe
restrictions on the scenario.

In the following, we will consider the state transition cy-
cle time Ay to be equal to Apgo, the odometry rate.
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Figure 2: The naive approach: A new measurement z; (green)
arrives at time ¢ and is simply connected with the newest vari-
able node x¢, ignoring the significant possible delay.

In the remainder of this section, we describe three pos-
sible approaches of incorporating the delayed measure-
ments z; into the factor-graph-based sensor fusion sys-
tem. All three strategies will be compared and evaluated
using results from a simulation in the next section.

3.1. The Naive Approach — Ignoring the Delay

Of course the simplest strategy is to ignore the possible
delay J; and treat all measurements z] as if they had been
created at time ¢ instead of 7. This naive approach would
simply associate the incoming new measurement z; with
the newest state node x;, as illustrated in Fig. @ Since in
reality it should be attached to x, instead, we can expect
large systematic errors when applying this naive method.

The error function of the GPS factor for the naive ap-
proach is defined as:

GPS-naive __ _.[2,y] T
e; =x; 7 — 1z (12)

3.2. Maximum Likelihood Selection

Another strategy is to perform a maximum likelihood se-
lection procedure. Together with every measurement z7,
a set of candidate system states Xy = {X¢_s, .- -, Xt} 1S
maintained. This set consists of all the state variables, the
measurement z] could possibly be associated to in real-
ity, since we know t — diax < 7 < t. In the following, the
index <y is used to denote the timestamp of one of these
state variables, therefore v =t ...t — dpax.

Whenever the measurement factor containing z{ is to be
evaluated, we evaluate it for all x, € A} and return the
result with the lowest error. Thus we select

*_

%, = argmin ||X[f’y] — 77 ||% (13)

Xy EX

X
and treat the factor as if it was connected solely to x.
Therefore, the resulting cost function of the GPS factor 1s

eg}PS—MLS — x:[ajﬂ/] _ ZZ (14)

This selection approach is inspired from the max-mixture
models of [17]. An illustration is given in Fig. [3]

eg}PS—MLS

ML Selection
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Figure 3: Maximum likelihood selection: The delayed mea-
surement z; (green) is dynamically connected to the state vari-
able that locally maximizes the measurement’s likelihood. The
selection process is performed whenever the factor is to be eval-
uated, but afterwards the factor is treated as if it was only con-
nected to the selected state variable.
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Figure 4: The explicit delay estimation approach: The un-
known delay §; is explicitly estimated for each arriving mea-
surement z7 . The measurement arrives at time ¢ but is estimated
to originate at time 7 = ¢ — J;. Therefore, the measurement fac-
tors (green) are weighted according to the difference between
the estimated measurement time 7 and the timestamp of the as-
sociated variable vertex x.,.

3.3. Explicit Delay Estimation

The most promising approach in terms of expected accu-
racy is to explicitly estimate the delay d; for each mea-
surement z; individually. To achieve this, we add a latent
variable for the unknown §; to the factor graph when a
new measurement z; arrives.

As in the ML selection approach described above, we
know that this new measurement z; could be connected
to any one of the IV state variables from the set X; =
{Xt—6,0s- - -, Xt} Butinstead of selecting one of these
states like above, we rather create N new factors qﬁi?f/.
Each of these factors connects one of the N state vari-
ables from X} to the newly introduced delay variable for
d;. Fig. @]illustrates this concept and shows the factors
2% in green. The superscript ° stands for explicit delay

t,y ;
estimation.

The error function of such a factor ¢§f’§ is defined as

ity =w- (6o (=) =) — =) (19)

where (t—d;)—y is the difference between the timestamp

«y of the state variable x., and the currently estimated tem-

poral origin of the measurement z]. The function f[??‘j]v



is the motion model that predicts how the state of x,
evolves during the given time interval. In other words,
we use that motion model to predict the system state at
the time ¢ — &;, which is our current best estimate of the
origin of z]. Notice that [(3::?,1/1]\/ only returns the (z,y)"
part of the full five dimensional state vector.

The weight factor w in (T3)) is defined as a squared expo-
nential:

2
w = exp 1 (Mt)_"y> (16)

2 Ow

This term is close to 1 if the estimated origin 7 of z]
is close to the timestamp of the regarded state variable
X~ and drops towards 0 otherwise. The denominator o,
controls how quickly the weight falls off and has been set
empirically to oy, = %AOdO.

Intuitively, one can understand this weight w as a kind
of switch, that gradually removes factors from the graph.
Of the N factors ¢‘§?f; (e.g. the four green factors in Fig.
M), ideally only those are “active” that connect to a state
variable x, so that «y is close to the current estimate of
the temporal origin of the delayed measurement z{. In
other words, depending on the current estimate of the de-
lay d;, the weights w will automatically “connect” z] to

the correct state variable x..

This whole mechanism shares strong resemblance with
our previous work on switchable constraints [18]] in the
context of robust pose graph SLAM. This special formu-
lation also used weights to remove or weaken the influ-
ence of certain factors from the graph.

An additional prior factor for the delay variable with error

function e " ensures the validity of the estimate of &; as
defined by (TI). If necessary, it is also possible to model
a random drift of the delay §; over time. Combining the
previous definitions, we gain the problem formulation for

the explicit delay estimation approach, which is:

X A" = argming A 35, [lef®[1% + 3, llefllA
4
+200 32, lef5lIe + 3, lle™ |2 (17)

In the last line we of course only sum over the valid times
t where a GPS measurement z] was received. Notice that
we collected all §; into the set A and that the optimization
problem is now defined over two sets of variables.

4. EXPERIMENTS AND RESULTS

We evaluated and compared the performance of the dif-
ferent strategies to deal with the unknown delay in a
simulation. This section explains this simulation and
presents the evaluation results.
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Figure 5: Top: Noisy measurements (green / blue) and ground
truth (red) for velocity and yaw rate used in the simulation. Bot-
tom: The resulting ground truth trajectory and the trajectory es-
timated from the noisy odometry.

Table 1: Parameters of the Simulation

Parameter Value
Aodo 02s
AGPS 02s...78s
5max min(Agps, 2.0 S)
Ow %AOdo

4.1. Description of the Simulation

We simulated a vehicle in a 5 dimensional state space
x; = (v,,0,v,w)T" for a total simulation time of 472
seconds. In this simulation, the vehicle followed the ve-
locity and yaw rate profiles depicted in Fig. [5] Since the
odometry measurements (v,w)' were subject to noise,
the trajectory according to the odometry alone substan-
tially deviates from the ground truth trajectory, as can be
seen in the bottom part of Fig. [3

As laid out before, odometry measurements u; = (v,w)"
arrived with cycle time Aggo = 0.2s, creating 2360 mea-
surements and state variables x; during the 472 simu-
lated seconds. In contrast, the position measurements
z] = (v,y)" were created every Agps seconds. To ex-
amine the influence of the GPS measurement frequency,
we varied Agps in steps of 0.4 seconds between 0.2 and
7.8 seconds. For each value of Agps, we conducted 100
complete trials of the simulation.

Furthermore, the GPS measurements arrived with a delay
d¢ that was unknown to the system. We did not keep the
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Figure 6: Mean trajectory errors vs. simulated GPS cycle time
Agps for the different strategies and a changing delay 6;. The
value of d; changed over time, see Fig. The dashed lines
illustrates the errors of the concurrent estimates while the solid
lines are the errors after final smoothing.

unknown delay time §; constant during one run of the
simulation, but rather let it change over time: Starting
from a delay of 0.4 seconds, the delay increased by 0.2
seconds every 100 seconds. This results in a maximum
delay time of 1.2 seconds.

To compare the performance of the three proposed strate-
gies (naive, maximum likelihood selection, and explicit
delay estimation), we implemented the necessary factors
for iSAM?2 [[1]] and used it to perform incremental sensor
fusion. The fused trajectory was compared to the ground
truth trajectory and the euclidean errors were calculated
to indicate the quality of the chosen approach. Notice that
we distinguish between “trajectory errors” and “concur-
rent trajectory errors”. The first uses the estimated tra-
jectory after final smoothing, whereas the latter one com-
pares the estimated vehicle positions after each timestep,
i.e. using the newest estimated x; after it has been ap-
pended to the factor graph and the update operation of
iSAM2 has been performed. The concurrent error is in
a way more meaningful, since it represents the adaptive-
lag smoothing results available during online operation
in contrast to batch operation after all data has been gath-
ered.

4.2. Results and Discussions of the Experiments

The resulting mean trajectory errors over all trials for
each of the three proposed methods are compared in Fig.
[l The naive strategy of ignoring the unknown delay time
d; obviously produces high systematic errors in the re-
sulting estimated trajectory. We can see the blue curve
increases with growing GPS cycle time Agps until the
value of 0.« = 1.2s is reached. Then it levels off and
stays almost constant at a value of approximately 20 me-
ters. This behaviour is predictable, because of how the
delay time d; is chosen and bounded. The maximum de-
lay time §; will increase until Agps = dmax and will then
remain constant with further increasing Agps. The con-
current errors and the errors after final smoothing behave
almost identical, only at very large Agps can we see a
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Figure 7: Changing delay: The delay J; changed during the
simulation and increased from 0.4 to 1.2 seconds. The plot com-
pares the true delay (red) with an exemplary estimation result
from the explicit delay estimation method (green).
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Figure 8: Mean errors between the estimated delays J; (esti-
mated by the explicit delay estimation approach) and the true
delays for the constant and changing delay experiments.

small relative increase of the concurrent error.

In contrast to the naive strategy, the maximum likeli-
hood selection (shown in red) and the delay estimation
method (green) produce very low and comparable errors
until Agps =~ 3s. After that point, the trajectory errors
for the ML selection approach increase sharply. The er-
rors after final smoothing reach a level that is identical
to the naive strategy. In contrast, the concurrent errors
increase well beyond this level, reaching mean values of
over 100 meters in the end. This indicates that the maxi-
mum likelihood selection strategy is unsuitable for online
data fusion in this experiment for large Agps.

The best results were achieved by the delay estimation
approach. Its trajectory errors remain low over the com-
plete span of Agps. This is true for both the concurrent
errors as for the errors after final smoothing. As expected,
the concurrent errors are slightly higher. Apart from the
low trajectory errors shown in Fig. [f] the proposed ap-
proach of explicit delay estimation was also able to main-
tain a good estimate of the actual delay ;. Fig. [/]illus-
trates how the delay d; changed over time and shows an
exemplary estimation result.

In addition to the experiments where the delay J; changed
over time, we repeated the simulations but held the de-
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Figure 9: Comparison of the mean total runtime for the three
different analyzed strategies. All experiments were conducted
on an Intel Core i7-2600 CPU running at 3.4 GHz, using iSAM?2
from the GTSAM package.

lay constant over time (initialized with a random value
between 0 and O, ). As expected, the obtained results
were very similar, but the unknown delay could be es-
timated more accurately. Fig. [§] compares the errors of
the estimated delay for the changing and constant delay
experiments.

The explanation for the inferior behaviour of the MLS
approach is that when the GPS measurements are avail-
able only rarely (i.e. Agps is large), the locally most
likely state variable picked by the ML selection strategy
is not necessarily the correct one anymore. The longer the
time intervals Agps between the GPS measurements get,
the more will the odometry-based trajectory estimates di-
verge from the real trajectory. At some point, the ML-
selection scheme starts to associate the GPS measure-
ments z; with the wrong state variables X, causing sys-
tematic errors in the overall estimation. Since the results
after final smoothing are much lower, these effects seem
to be mitigated by the smoother over time as more data
becomes available.

Apart from the high estimation errors, the maximum like-
lihood selection scheme is not reliable in its convergence.
The solver iISAM2, with Gauss-Newton) started to di-
verge for many of the trials, with a clear correlation be-
tween divergence probability and Agps.

Regarding the total runtime, the maximum likelihood
selection approach is superior to the delay estimation
method until Agps > 3 s (see Fig. E]) After this point the
MLS method becomes practicably unusable due to the in-
creasing runtime, the divergence and the high estimation
errors.

5. CONCLUSIONS

Our paper analyzed how measurements with unknown
delays can be best incorporated into a graph-based in-
cremental sensor fusion framework. Our experiments
showed that of the three compared approaches, the only

feasible method is to incorporate the measurements by
applying the explicit delay estimation approach proposed
in section This method explicitly estimates the un-
known delay 0, for each measurement and would also al-
low to incorporate prior knowledge or a drift model of
Ot

As expected, the naive approach of completely ignoring
the delay resulted in high systematic errors in the state
estimation. The maximum likelihood selection (MLS)
strategy produced promising results at first, but is unre-
liable since it exhibits divergent behaviour when the in-
tervals between the delayed measurements get larger. In
this case, the errors accumulated by the noisy other sen-
sors (e.g. odometry in our simulation) cause MLS to pick
the wrong state node since the locally most likely associ-
ation is not the best on a global level. Depending on the
actual system and sensor setup, MLS might be feasible if
the uncertainties of state prediction are low or correcting
measurements arrive at a comparably high rate. It seems
that MLS is the more likely to degrade the more uncer-
tain the state prediction gets during single instances of
delayed measurements.

Overall, the work presented in this paper is the result of a
first attempt to address the problem of sensor fusion with
delayed measurements in factor graphs when the delay
is unknown. Unarguably, a more elaborate examination
of the problem is necessary. The chosen scenario of fus-
ing absolute position with odometry measurements on a
CTRV vehicle might be too limited to conclude that the
presented explicit delay estimation approach is feasible
in all possible scenarios of sensor fusion.

Also our assumptions made on the delay characteristics
need to be examined closely. While the boundedness and
the quantization assumption appear to be relatively mild,
the fact that the delay stays constant for longer periods
of time needs to be given close scrutiny. Is the proposed
approach still valid when the delay varies from measure-
ment to measurement, e.g. following a stochastic pro-
cess?

In future work we therefore want to conduct more simula-
tions and also evaluate the proposed method on real data
collected in different scenarios, e.g. fusing IMU and de-
layed vision information to estimate the state of a highly
dynamic quadrotor UAV.
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