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Fig. 1: We present a novel place recognition system that adapts state-of-the-art object proposal techniques to identify potential
landmarks within an image. The proposed system utilizes convolutional network features as robust landmark descriptors to
recognize places despite severe viewpoint and condition changes, without requiring any environment-specific training. The
colored boxes in the images above show ConvNet landmarks that have been correctly matched between two significantly
different viewpoints of a scene, thus enabling place recognition under these challenging conditions.

Abstract—Place recognition has long been an incompletely
solved problem in that all approaches involve significant com-
promises. Current methods address many but never all of the
critical challenges of place recognition – viewpoint-invariance,
condition-invariance and minimizing training requirements. Here
we present an approach that adapts state-of-the-art object
proposal techniques to identify potential landmarks within an
image for place recognition. We use the astonishing power
of convolutional neural network features to identify matching
landmark proposals between images to perform place recognition
over extreme appearance and viewpoint variations. Our system
does not require any form of training, all components are generic
enough to be used off-the-shelf. We present a range of challenging
experiments in varied viewpoint and environmental conditions.
We demonstrate superior performance to current state-of-the-
art techniques. Furthermore, by building on existing and widely
used recognition frameworks, this approach provides a highly
compatible place recognition system with the potential for easy
integration of other techniques such as object detection and
semantic scene interpretation.

I. INTRODUCTION

Visual place recognition research has been dominated by
sophisticated local feature-based techniques such as SIFT and
SURF keypoints, hand-crafted global image descriptors such
as GIST and bag-of-words approaches. However, as robots
operate for longer periods of time in real-world environments,
the problem of changing environmental conditions has come
to the fore, where conventional recognition approaches fail.
To address this problem, a number of techniques have been
adopted – matching image sequences [27, 29, 33, 28], creating
shadow-invariant images [6, 43, 25, 24], learning salient
image regions [26] or learning temporal models that allow

the prediction of occurring changes [31]. Recent research has
also demonstrated how generic deep learning-based features
trained for object recognition can be successfully applied
in the domain of place recognition [41, 3]. However, all
current approaches have introduced at least one significant
performance or usability compromise, whether it be a lack
of invariance to camera viewpoint changes [27, 28], extensive
environment-specific training requirements [26], or the lack
of appearance change robustness [7]. If visual place recog-
nition is to be truly robust, it must simultaneously address
three critical challenges: 1) condition invariance; 2) viewpoint
invariance; and 3) generality (no environment-specific training
requirements).

In this paper, we present a unified approach that addresses
all three of these challenges. We use a state-of-the-art ob-
ject proposal method to discover potential landmarks in the
images. A convolutional network (ConvNet) is then used to
extract general purpose features for each of these landmark
proposals. We show that the ConvNet features are robust to
both appearance and viewpoint change; the first two critical
challenges. We also emphasize that landmark proposals require
no training and the ConvNet is pre-trained on ImageNet,
a generic image database; the third critical challenge. By
conducting experiments on a number of datasets we show that
our system is training-free in that no task-specific or even
site-specific training is required. We also highlight that only
single images are required for matching and the system does
not require image sequences. We demonstrate the generality
of our system on a number of existing datasets and introduce



new challenging place recognition datasets, while comparing
to state of the art methods.

The novel contributions of this paper are:
1) A place recognition system that is robust to viewpoint and

appearance variation, requiring no environment specific
training, and

2) The introduction of new challenging datasets exhibiting
extreme viewpoint and appearance variation.

The paper proceeds as follows. Section II provides a brief
overview of related work. The method is described in detail
in Section III followed by an overview of the four sets of ex-
periments. We present results in Section V before concluding
with a discussion and outlining future work.

II. RELATED WORK

The focus of research in place recognition has recently
moved from recognizing scenes without significant appearance
changes to more challenging, but also more realistic changing
environments.

Place Recognition: Methods that address the place recog-
nition problem span from matching sequences of images
[27, 17, 40, 33, 29], transforming images to become invariant
against common scene changes such as shadows [6, 43, 25, 24,
21], learning how environments change over time and predict-
ing these changes in image space [30, 21, 31], particle filter-
based approaches that build up place recognition hypotheses
over time [23, 39, 22], or build a map of experiences that
cover the different appearances of a place over time [5].

Learning how the appearance of the environment changes
generally requires training data with known frame correspon-
dences. [17] builds a database of observed features over the
course of a day and night. [30, 31] presents an approach that
learns systematic scene changes in order to improve perfor-
mance on a seasonal change dataset. [26] learns salient regions
in images of the same place with different environmental
conditions. Beyond the limitation of requiring training data,
the generality of these methods is also currently unknown;
these methods have only been demonstrated to work in the
same environment and on the same or very similar types
of environmental change to that encountered in the training
datasets.

Although point feature-based methods were shown to be
robust against viewpoint changes [7, 8, 38], to the authors’
knowledge, significant changes in both viewpoint and environ-
mental conditions have not been addressed in the literature.
We show that robustness to variation in both cases can be
addressed without site-specific training.

Feature-based Approaches: SIFT [20], SURF [1] and a
number of subsequent feature detectors have been demon-
strated to display a significant degree of pose invariance but
only a limited degree of condition-invariance (illumination,
atmospheric conditions, shadows, seasons). Perceptual change
as drastic as that illustrated in Fig. 1 has been shown to
be challenging for conventional feature detectors [27, 44]
and while FAB-MAP [7] is robust with respect to viewpoint

changes, it is known to fail in conditions with severe ap-
pearance changes [29, 31, 13]. Furthermore, [11, 34] argued
that FAB-MAP does not generalize well to new environments
without learning a new site-specific vocabulary.

[26] shows that patches and region-based methods within an
image can exhibit the same robustness as whole-image tech-
niques while retaining some robustness to scale variation, and
thus achieve some of the advantages of both point and whole-
image features. However, extensive site-specific training was
required. In this research we extend the advantages of region-
based methods to address both viewpoint and environmental
changes without the requirement for site-specific training.

A commonality between all these approaches is that they
rely on a fixed set of hand-crafted traditional features or
operate on the raw pixel level. A recent trend in computer
vision, and especially in the field of object recognition and
detection, is to exploit learned features using deep convo-
lutional networks (ConvNets). The most prominent example
of this trend is the annual ImageNet Large Scale Visual
Recognition Challenge where for the past two years many of
the participants have used ConvNet features [36].

Several research groups have shown that ConvNets outper-
form classical approaches for object classification or detection
that are based on hand-crafted features [19, 37, 10, 12, 35].
The availability of pre-trained network models makes it easy
to experiment with such approaches for different tasks: the
software packages Overfeat [37] and Decaf [10] or its
successor Caffe [16], provide similar network architectures
that were pre-trained on the ImageNet ILSVRC dataset [36].

Recent studies have shown that state-of-the-art performance
in place recognition can be achieved with networks trained
using generic data: [41] demonstrated that ConvNet features
representing the whole image outperform current methods
for changing environmental conditions. However, whole-image
features suffer from sensitivity to viewpoint change. We show
that by combining the power of ConvNets and region-based
features rather than using whole-image representations, a large
degree of robustness to viewpoint change can be achieved.

Consequently in this research we build on the best perform-
ing aspects of the state of the art; the recognition performance
of ConvNet approaches [41], and the robustness of region-
based methods to viewpoint change [26].

III. PROPOSED SYSTEM

In this section we describe the five key components of our
proposed place recognition system:

1) landmark proposal extraction from the current image
2) calculation of a ConvNet feature for each proposal
3) projection of the features into a lower dimensional space
4) calculation of a matching score for each previously seen

image
5) calculation of the best match
Fig. 2 illustrates our system. The approach has several

properties that distinguishes it from previous work:
• The system does not require any task-specific or site-

specific training. It uses an off-the-shelf pre-trained con-



volutional network [16] to calculate features and a generic
object proposal system to extract landmark proposals
from images.

• By using a landmark proposal system (Edge Boxes [45])
that was designed to find arbitrary objects in scenes, we
extract recognizable and stable regions in the images that
automatically tend to be reliable landmarks.

• Relying on landmark regions rather than the whole image
to describe a scene significantly improves the robustness
against view point changes or partial occlusions in the
scenes.

• ConvNet features have been shown to be more stable
against appearance and condition changes than other
methods [41]. Since we use these robust features as
descriptors for the extracted landmarks, we inherit their
robustness against appearance changes such as induced
by weather, seasons, or the time of day.

• Since both the landmark proposal and the feature extrac-
tion system are used as exchangeable black boxes, any
future improvement on these methods by the robotics
or computer vision community can be immediately ex-
ploited by exchanging the currently used algorithms and
network architecture with improved future versions.

• The incorporation of a complete object detection pipeline
readily enables future enhancements, such as using the
output of the object classifier layer of the ConvNet to
discard those proposed landmarks that are likely to con-
tain dynamic objects or scene structures that are otherwise
known to be unsuitable as landmarks.

A. Bottom-Up Object Proposals as Region Landmarks

In contrast to previous work we exploit the bottom-up object
proposal methods that have been developed in the computer
vision community. These methods usually serve as a first step
in a general purpose object detection pipeline and extract
bounding boxes from an image that are likely to contain
an interesting object. R-CNN [12] is a prominent recent
example of such a system that extracts approximately 2000
proposal regions per image and passes all of them through a
Convolutional Network classifier that determines if an object
is present and which of the known classes it belongs to.

To extract landmarks we apply Edge Boxes, an object
proposal method developed by Zitnick and Dollár [45]. It has
been shown to outperform other recent proposal methods such
as BING [4] or Selective Search [42] in the context of object
detection and is considered the current state of the art by
the computer vision community [15]. In our experiments, we
extract 50 or 100 landmark proposals per image.

Edge Boxes mainly relies on the observation that the number
of contours that are wholly contained in a bounding box is
indicative of the likelihood of the box containing an object.
It measures an objectness score by comparing the number of
edges within each bounding box with the number of edges
passing through it.

Fig. 2: Summary of the proposed place recognition approach
based on ConvNet landmarks.

B. ConvNet Features as Robust Landmark Descriptors

After landmark proposals have been extracted, we calculate
an individual feature vector to describe their appearance.
Ideally, this feature vector should be robust against changes
in appearance induced by weather, seasonal effects, time of
day, and – to a certain degree – occlusions and changes in
perspective. While previous work often relied on standard
feature descriptors like SIFT or SURF [7] or hand-crafted
features to describe landmarks for place recognition, we pass
each landmark proposal through a Convolutional Network to
extract a feature vector that is stable under the conditions
mentioned above.

We build upon the astonishing results from the computer
vision community where ConvNets have been shown to out-
perform all previous methods in the area of object detection
and recognition [19, 37, 10, 12, 35]. In robotics, the first
publications that exploited the beneficial properties of these



generic pre-trained features for place recognition appeared
very recently [3, 41]. Most available ConvNet frameworks
(Overfeat [37], Decaf [10] and its successor Caffe [16])
follow the same principled architecture that was introduced by
AlexNet [19]. The network consists of 5 combined layers
that perform a convolution, followed by a nonlinear activation
function (rectified linear units), and spatial pooling. Three fully
connected layers plus a subsequent soft-max layer form the
upper parts in the network hierarchy.

[41] has shown that the features of the mid-level features
from the 3rd convolutional layer (hereafter called conv3)
are highly invariant against the appearance changes that are
caused by different weather conditions, seasons or the time of
day. They found the cosine distance to be a suitable measure
between two of these features. We follow their results and
extract a conv3 feature for each of the landmark proposals in
an image, utilizing the AlexNet network [19] as implemented
by Caffe [16]. It was pre-trained on the ImageNet dataset.
We modified the ConvNet so that only the layers up to conv3
are calculated. This allows us to extract a feature within 15 ms
(a speed-up of 6.7×). The landmarks are resized to the
expected input size of 231 × 231 × 3 pixels. This procedure
has been suggested in the object detection literature [12] and
does not seem to degrade the performance.

C. Random Projections for Dimensionality Reduction
The features produced by the conv3 layer of the con-

volutional network are of size 384 × 13 × 13, i.e. for each
proposed landmark we calculate a 64,896 dimensional feature.
Calculating the pairwise cosine distances between 50 or 100
of those high-dimensional features per image during the image
matching process is an expensive operation.

To make the matching process more efficient, we ap-
ply dimensionality reduction. According to the Johnson-
Lindenstrauss-Lemma [18] a set of points in a high-
dimensional space can be linearly embedded in a lower
dimensional space while maintaining the pairwise euclidean
distances between the points up to an epsilon factor:

(1− ε)‖u− v‖2 ≤ ‖Au−Av‖2 ≤ (1 + ε)‖u− v‖2 (1)

where u,v ∈ Rn are vectors of the original high dimensional
space and A ∈ Rm×n is a projection into a lower dimensional
space Rm with m � n. We leverage this lemma and apply
a Gaussian Random Projection [9, 2] to transfer the original
features to a space of much lower dimension. The elements
of the projection matrix A are drawn from a Gaussian dis-
tribution. In our experiments, we project the 64,896 original
dimensions to 512, 1024, and 4096 dimensions and compare
their relative performances.

The Johnson-Lindenstrauss-Lemma is formulated in terms
of the euclidean distance between points, but due to the
spherical distribution of the features in their high dimensional
space, we found it to be applicable for the cosine distance too.

D. Image Matching
To determine the similarity between two images Ia and
Ib, we perform matching between all landmark proposals lai

and lbj that were extracted from both images. The landmark
matching is performed using a nearest neighbor search based
on the cosine distance dij of their descriptors (after applying
the dimensionality reduction as described above) and applies
crosschecking, i.e. only mutual matches are accepted.

As a second step, we score each matched landmark pair
(lai , l

b
j) by the similarity of the shape of their bounding boxes.

Let wi, hi, wj , and hj be the width and height of the matched
landmark proposals. We then calculate their shape similarity
measure sij :

sij = exp

(
1

2

(
|wi − wj |

max(wi, wj)
+
|hi − hj |

max(hi, hj)

))
(2)

The overall similarity between both images Ia and Ib is then
calculated as

Sa,b =
1

√
na · nb

∑
ij

1− (dij · sij) (3)

where dij is the cosine distance between both landmarks and
na, nb are the number of extracted landmarks proposals in both
images, including the non-matched ones. In our experiments,
na = nb = 50 or 100. The shape similarity score sij penalizes
false positive matches between landmarks that have a similar
conv3 descriptor but are of significantly different shape.
Empirically we found this improves overall performance by
a small but notable margin. The matched landmarks can still
vary in size and aspect ratio, since the appearance-based cosine
distance between two landmarks has a bigger influence on the
overall similarity score.

To retrieve the best matching database image Ia for a query
image Ib, we search for the database image with the highest
similarity score, i.e. argmaxa Sa,b. The matching image is
found using the single best match only.

IV. EVALUATION AND RESULTS

This section describes the conducted experiments and their
results. We compare the performance of the proposed system
against several state of the art methods using precision-recall
plots. Concretely, we compare against the whole image, single
ConvNet feature system proposed by [41], the feature-
based method FAB-MAP [7] (using OpenFABMAP [14]) and
the sequence-based approaches SeqSLAM [27] (using the
OpenSeqSLAM implementation [40]) and SMART [33]. FAB-
MAP’s vocabulary was trained on the St. Lucia dataset1. We
found that training a specific vocabulary on the test dataset for
each of the individual experiments in the following increased
FAB-MAP’s performance slightly, but such an approach would
be infeasible in practice.

A. Place Recognition with Viewpoint Variations

In this experiment we evaluate the robustness to viewpoint
variations on the Gardens Point dataset that consists of footage
recorded by a pedestrian. It exhibits viewpoint variations that
occur from walking on the left or right side of a pathway and
mild appearance changes mainly caused by dynamic objects

1http://tinyurl.com/stluciadataset



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Gardens Point: day-left vs. day-right

50 regions, exact cosine distance
whole image, exact cosine distance
FAB-MAP

Fig. 3: Results for the Gardens Point Campus dataset. We
clearly outperform the whole-image ConvNet-based method
proposed by [41] and OpenFABMAP [14].

Fig. 4: Two example scenes from the Gardens Point Cam-
pus dataset with extracted and matched ConvNet landmarks.
Notice the lateral camera displacement of several meters.

such as pedestrians. The dataset has been used in a number of
place recognition evaluations before (e.g. [41]) and is available
online2. Fig. 4 shows two example frames along with the
extracted and matched landmarks. When comparing to the
results obtained by the FAB-MAP [7, 14] and the whole-
image ConvNet based method of [41], we see in Fig. 3 that
our method outperforms both approaches significantly, coming
close to perfect performance.

B. Place Recognition with Viewpoint and Appearance
Changes – The Mapillary Dataset

These experiments introduce a new dataset exhibiting sig-
nificant changes in viewpoint and moderate changes in ap-
pearance. Mapillary3 is a crowdsourced alternative to Google
Street View. It is a collaborative photo mapping initiative that
allows users to upload sequences of GPS-tagged photos and
provides an API interface to download these sequences along
with their meta data. Since many roads have been mapped by
more than one user, Mapillary is an ideal platform to harvest
datasets for place recognition under every-day conditions. We
downloaded three sequences of images that exerted significant
viewpoint changes and make these available to the community
along with ground truth data. For example, the images of
the Berlin Kurfürstendamm (201 + 222 frames, 3 km) and
Berlin Halenseestraße sequence (157+67 frames, 3 km) have
been recorded by a bike rider on the bike lane and from the
upper deck of a tourist bus, or a dashboard camera in a car
respectively. This results in a large variation of viewpoint, as
can be seen in Figs. 1, 5, and 6. These figures also illustrate

2http://tinyurl.com/gardenspointdataset
3http://www.mapillary.com

Fig. 5: Examples of successfully matched scenes from the
Berlin Kurfürstendamm sequence of the Mapillary dataset.
Images in a row belong to the same place but have been taken
from different viewpoints, i.e. from the bike lane and from the
upper deck of a tourist bus. The colored boxes illustrate some
of the extracted and correctly matched landmarks.

some of the landmark proposals that were correctly matched
between the image pairs and demonstrate that the matching
process is robust against a reasonable amount of scaling,
occlusion, illumination changes, and perspective distortion.

As we can see from the precision recall plots in Fig. 7,
our proposed method outperforms the approach of [41] (us-
ing a single ConvNet feature over the whole image), FAB-
MAP [7] (utilizing the OpenFABMAP implementation [14])
and SMART [33] by a large margin. This underlines the
increased robustness against viewpoint changes.

The results also illustrate the effect of different parameters
on system performance. Using more landmark proposals (i.e.
100 instead of 50) leads to more accurate place recognition.
Performance also does not appear to drop significantly when
applying dimensionality reduction using Gaussian Random
Projections. The differently colored lines represent the exact
cosine distance over all 64,896 dimensions (red), and the
reduced feature spaces of 4096 (black), 1024 (green), and
512 (cyan) dimensions. As we can see, the performance
drops slightly with reduced dimensionality, but the difference
between the exact cosine distance and the reduced spaces
of 1024 and 4096 is marginal, especially when using 100
landmarks per image.

Another sequence (Malmö John Ericssons Väg, 221 + 378
frames, 4 km) from Mapillary contains only mild viewpoint
changes; both traverses were recorded from the same lane
on a road. However, the weather conditions between the two
recordings were very different, changing from a bright sunny
day to a murky overcast day with wet roads after a rain.
Fig. 8 shows two example scenes. In the results illustrated
in Fig. 9 we see that when using only 50 landmarks, the
performance is worse than the whole-image system of [41], for



Fig. 6: The images in the Berlin Halenseestraße sequence have
been recorded by a biker riding on the bike lane (left column)
and a dashboard camera in the front of a car (right column).
The changes in viewpoint are severe but our proposed method
is able to extract landmarks and correctly match them between
a large number of scenes.

both the exact cosine distance and the reduced feature space
of 1024 dimensions. When the number of landmark proposals
is increased to 100 the performance is superior to [41],
even when applying dimensionality reduction. Our approach
outperforms FAB-MAP [7, 14] for all tested parameters.

C. The Library Robot Indoor Dataset

In this experiment we evaluate our approach on a dataset
captured by a service robot in a public library. The robot
traversed the library once during the day and a second time
during the night. Appearance changes were induced by the
different external and internal lighting conditions, while people
and moved furniture caused structural changes. In contrast to
the previous datasets, this experiment is more realistic since
the robot did not revisit all places, i.e. there are true negative
non-matching scenes. Furthermore, the robot encounters many
weakly textured areas and large parts of the environment suffer
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Fig. 7: Our proposed method outperforms the approaches
by [41] (blue solid), SMART [33] (blue dashed) and FAB-
MAP [7, 14] (blue dash dot) on the Berlin datasets. The pre-
cision recall curves compare the performance using different
parameters of our system.

from perceptual aliasing. The results and example scenes are
depicted in Fig. 10. Our approach again outperforms FAB-
MAP in this scenario.

D. Quantifying Viewpoint Robustness

a) Real World Scenes: To better quantify the robustness
to viewpoint changes, we systematically translate a camera in
a complex scene with both close and distant objects. We use
the image from the original position as the reference image
and move the camera sideways in 10 cm increments under
changed illumination conditions. The images from the changed
conditions are used as query images, i.e. we attempt to match
them with the original image. To make the experiment more
significant, we repeat it in 8 different scenes and add 678
unrelated indoor scenes to the dataset. Fig. 11 plots the average
accuracy over the sideways camera displacement. Our ap-
proach outperforms FAB-MAP [7, 14] under this combination
of appearance and viewpoint change.

b) Simulated Viewpoint Changes: For this experiment
we use 2289 images of the spring and winter season of the
Nordland train dataset (see [31] for an elaborate discussion of
the dataset) and crop them to half of their original width. We
simulate viewpoint changes between two traverses by shifting



Fig. 8: Example scenes from the John Ericssons Väg sequence.
Despite different weather conditions (sunny vs. overcast) the
ConvNet landmarks allow for successful place recognition.
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Fig. 9: With 100 landmarks, our proposed approach performs
better than the whole image ConvNet-based method of [41]
and OpenFABMAP [14, 7] on the Ericssons Väg sequence.

the images of the second traverse to the right, so that the
overlap between the images are 90%, 75% and 65%.

The results of this experiment are illustrated in Fig. 12.
Our proposed method based on landmark proposals and robust
ConvNet features (solid lines) again clearly outperforms the
whole-image based method (dashed lines) except for the ide-
alized case of 100% overlap. However, such a scenario is not
realistic for real-world applications. Fig. 12 illustrates how the
system can pick the same objects as landmark proposals across
changing environmental conditions, and match them between
images despite the changes in viewpoint and appearance.

E. Runtime Considerations

Like other state-of-the-art methods [26] the system in its
current stage is not capable of processing images in real time.
Finding landmark proposals using the Matlab implementation
of Edge Boxes [45] takes around 1.8 seconds per image on
a standard desktop machine. In addition, calculating a single
ConvNet feature up to layer conv3 requires approximately
15 ms using Caffe on a NVIDIA Quadro K4000 GPU.

In future work we will adapt the system so that only one
forward pass through the ConvNet is performed per image,
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Fig. 10: Example scenes (top) and precision-recall plot (bot-
tom) for the Library dataset. This dataset was collected by a
mobile service robot roaming through the university library
both during the day and night.
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Fig. 11: Top: Example scenes from the viewpoint evalua-
tion experiment: Daytime reference (left) and three translated
nighttime query scenes (right). Bottom: Results show our
proposed method is more robust than FAB-MAP [7, 14].

instead of one individual pass for each of the 100 landmarks.
This will result in a 100× speed-up of the feature extraction.

F. Improving the Absolute Performance by Sequence Search

While single image matching performance can serve as a
good evaluation of performance, in many practical robotic
applications it is feasible to exploit the inherent temporal
information available to a navigating robot. Consequently we
replace the simple nearest neighbor search with a state-of-
the-art sequence search technique from [33], while keeping
the preceding parts of our approach. Performance improves
significantly even for short sequence search lengths of 6
images. Fig. 13 summarizes these results and compares the
vanilla single-image precision recall curves from above with
the results obtained by the addition of the sequence search.

V. CONCLUSION AND DISCUSSION

We have presented a novel place recognition system that
builds on state-of-the-art object detection methods and con-
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Fig. 12: Synthetic viewpoint change experiments using
cropped and shifted images of the Nordland spring and winter
dataset. Top: Although large parts of this example scene are
occluded by a train in the left image (spring season) and
the right image (winter) was taken from a different simu-
lated viewpoint, our method extracts and successfully matches
the landmark regions illustrated by the colored boxes. Bot-
tom: Precision recall plot showing the proposed region-based
method (solid) outperforms the whole image based method
[41] (dashed) and SeqSLAM [27] (dotted) significantly for
different values of overlap between the query and database
images.

volutional visual features. The system generates a sufficient
number of landmark proposals that are both stable and re-
peatable over significant viewpoint and condition changes and
hence perfectly suited for place recognition. Perhaps most
importantly, the method does not require any environment-
specific training, instead utilizing a generic ConvNet pre-
trained on a large computer vision image dataset. The validity
of using such an approach is confirmed by the technique’s
consistent place recognition performance over a wide range
of datasets. When coupled with short (and hence practical)
sequence-based matching methods, the performance improves
even further.

As well as demonstrating state-of-the-art performance with-
out environment-specific training, the results have also re-
vealed further insights: Mid-level ConvNet features appear
to be highly suitable as descriptors for landmarks of various
sizes in a place recognition context; they are stable under
appearance changes and can be successfully matched even
when the landmark is partially occluded or changes its size and
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Fig. 13: The proposed method can be combined with sequence
search techniques such as [33, 27] to boost absolute perfor-
mance. Here we used the sequence search part of SMART
[33] with a sequence length of 6 images.

aspect ratio. Several examples of this impressive performance
have been provided in the paper – for example the landmarks
shown in Fig. 1.

There are many promising avenues for future research: First
and foremost, state-of-the-art place recognition performance
is currently achieved using convolutional networks trained
on generic computer vision classification datasets. We are
investigating whether fine tuning the network for the specific
task of place recognition will result in further performance
gains for our approach, but also for methods such as [41, 3].

Significant further improvements may be possible by intro-
ducing several quality measures. The repeatability of different
landmark proposal methods can be quantified using static
camera databases such as AMOS [32]. By quantifying the
relative viewpoint changes in datasets like Mapillary (GPS-
localization alone is too coarse), we will be able to analyze the
system’s sensitivity to occlusion and large perspective changes.
Building on the idea of landmark quality assessment, the
semantic expressiveness of the ConvNet’s object recognition
layer (fc8/prob) can be used to learn and to discard “bad”
landmarks (e.g. things known to be moving, such as cars,
or people) or generate weights for “good” landmarks (e.g.
buildings), perhaps using feedback from the place recognition
performance. Finally, using temporal information will enable
us to filter landmark proposals over short periods of time and
discard unstable ones.

The current system has no explicit or implicit metricity.
Following on the success in metric localization of landmarks
presented in [26], we will investigate whether the camera
position can be estimated relative to observed landmarks.
Other geometry-within-the-image techniques like geometric
verification [8, 28] may also improve performance. In subse-
quent work we replaced the Gaussian Random Projection by a
binary locality-sensitive hashing method that compresses the
original 64,896 dimensional conv3 feature vectors to merely
8192 bits. First results indicate this approach regains more
than 95% of place recognition performance while achieving a
250× speed-up for the feature matching.
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