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BRIEF-Gist – Closing the Loop by Simple Means

Niko Sünderhauf and Peter Protzel

Abstract— The ability to recognize known places is an
essential competence of any intelligent system that operates
autonomously over longer periods of time. Approaches that
rely on the visual appearance of distinct scenes have recently
been developed and applied to large scale SLAM scenarios.
FAB-Map is maybe the most successful of these systems.

Our paper proposes BRIEF-Gist, a very simplistic
appearance-based place recognition system based on the BRIEF
descriptor. BRIEF-Gist is much more easy to implement and
more efficient compared to recent approaches like FAB-Map.
Despite its simplicity, we can show that it performs comparably
well as a front-end for large scale SLAM. We benchmark our
approach using two standard datasets and perform SLAM on
the 66 km long urban St. Lucia dataset.

I. INTRODUCTION

Modern SLAM systems are typically based on the efficient
optimization of probabilistic constraint or factor graphs.
These systems are generally divided into a back-end and
front-end [8]. The back-end contains the optimizer that builds
and maintains a map by finding an optimal solution to
the robot’s trajectory and the landmark positions given the
constraints constructed by the front-end. This front-end is
responsible for data association in general and, in the context
of pose-only SLAM, place recognition in particular.

Reliable place recognition is a hard problem, especially
in large-scale environments. Repetitive structure and sensory
ambiguity constitute severe challenges for any place recogni-
tion system. As optimization based back-ends for SLAM like
iSAM [7], Sparse Pose Adjustment [8], iSAM2 [6], or g2o
[10] are not robust against outliers, even a single wrong loop
closure will result in a catastrophic failure of the mapping
process.

Recent developments in appearance-based place recog-
nition therefore aimed at reaching a high recall rate at
100% precision, i.e. they concentrated on preventing false
positives. This of course leads to computationally involved,
very complex systems.

In parallel work, we developed a robust formulation to
pose graph SLAM that allows the optimizer in the back-
end to identify and reject wrong loop closures. This can be
understood as enabling the back-end to take back any data
association decision of the front-end. Given this robust back-
end, the need of reaching a precision of 100% during the data
association (i.e. place recognition) process is eliminated. The
place recognition system in the front-end can therefore be
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kept simple and focused on a high recall rate, as a reasonable
number of false positive loop closures is acceptable.

Our paper proposes BRIEF-Gist, an appearance-based
place recognition system that builds upon the BRIEF de-
scriptor by Calonder et al. [3]. We evaluate BRIEF-Gist
and conclude that our approach is suitable to perform place
recognition in large scale scenarios, despite its simplicity
regarding implementation and computational demands.

II. RELATED WORK

A. Appearance-Based Place Recognition

Important work towards appearance-based place recogni-
tion has been conducted by Sivic and Zisserman [22] who
borrowed ideas from text retrieval systems and introduced
the concept of the so called visual vocabulary. The idea was
later extended to vocabulary trees by Nister and Stewenius
[16], allowing to efficiently use large vocabularies. Schindler
et al. [21] demonstrated city-scale place recognition using
these tree structures.

FAB-Map [4] is a probabilistic appearance-based approach
to place recognition. It builds on a visual vocabulary learned
from SURF descriptors [1]. A Chow Liu tree is used to
approximate the probability distribution over these visual
words and the correlations between them. This allows the
system to robustly recognize known places despite visual
ambiguity. FAB-Map 2.0 [5] has been applied to a 1000
km dataset and achieved a recall of 3.1% at 100% precision
(14.3% at 90 % precision respectively).

Recently, Cadena et al. [2] combined appearance-based
place recognition with Conditional Random Fields to filter
out mismatches caused by visual ambiguity between spatially
distinct places.

Maddern et al. [12] report an improvement to the robust-
ness of FAB-Map by incorporating odometric information
into the place recognition process.

The methods mentioned above describe the appearance
of a scene through distinct landmarks (feature points) and
their descriptors. Another strategy is to use so called holistic
descriptors, i.e. descriptors that describe the appearance of
the complete scene and not of single points in it. The idea of
a holistic scene descriptor is not new and was e.g. examined
by Oliva and Torralba [18] [17] with the introduction of the
Gist descriptor. This global image descriptor is built from
the responses of steerable filters at different orientations and
scales. More recently, [14] demonstrated place recognition
using the Gist descriptor on panoramic images in an urban
environment.
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B. The BRIEF Descriptor

BRIEF (Binary Robust Independent Elementary Features)
has been introduced as an efficient descriptor for feature
points (or keypoints) by Calonder et al. [3]. It was found
to be superior to the established SIFT [11] or SURF [1]
descriptors, both in recognition performance and runtime
behaviour.

The BRIEF-descriptor is a bit-vector (e.g. of length 256)
that is built by simple binary tests on a subset of the
pixels surrounding the keypoint center. Calonder et al. [3]
suggest using a simple comparison of pixel intensity values:
For a descriptor of length n (e.g. n = 256), n pixel-
pairs (pk,1, pk,2) are chosen in the local neighborhood (e.g.
48×48) of the keypoint center. The k-th bit in the descriptor
is set to 1 if pk,1 < pk,2 and set to 0 otherwise. This way,
the descriptor can be built very efficiently. Notice that the
same neighboring pixels will be chosen for all descriptors.

Comparing two descriptors D1 and D2, i.e. determining
their similarity, can be performed very efficiently using
the Hamming distance (which is the L1 norm). As the
descriptors are simple bit-vectors, their Hamming distance
can be calculated by

‖D1 −D2‖H = bitsum(D1 ⊕D2) (1)

where ⊕ is the binary XOR operation and bitsum(·) counts
the set bits in a bit-vector.

III. THE BRIEF-GIST SCENE DESCRIPTOR

The good recognition performance of BRIEF on local
keypoints reported by [3] inspired us to use BRIEF as
a holistic descriptor for a complete image. We call this
approach BRIEF-Gist.

The implementation is very straight-forward: To calculate
the BRIEF-Gist descriptor, we first downsample the image
to a suitable size close to the descriptor patch size (e.g. 60×
60 pixel). Then we calculate the BRIEF descriptor around
the center of the downsampled image using OpenCV’s [20]
implementation.

Another idea is to partition the image in m ×m equally
sized tiles. This tiled BRIEF-Gist descriptor is calculated by
downsampling the image to a size of m·s×m·s pixel, where
s is the descriptor patch size, e.g. s = 48. Then a BRIEF
descriptor is calculated for each of the m2 tiles separately,
resulting in m2 bit-vectors that are stacked to gain the final
descriptor vector.

BRIEF-Gist descriptors can be calculated and compared
extremely fast: Using a standard desktop PC (Core 2 Duo)
and OpenCV 2.2, calculating the 64 bytes long BRIEF-
Gist descriptor takes only 1 ms, including the necessary
image downsampling and color conversion. The calculation
of the BRIEF descriptor itself takes only 0.05 ms. Calculating
the similarity between two descriptors according to (1) is
performed in 0.001 ms.

The similarity between two scenes, respectively their
distance in the descriptor space is given by the distance
of their BRIEF-Gist descriptors as defined in (1). Notice
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Fig. 1. (a) Ground truth mask for the New College dataset (scenes
120 . . . 1200). Red indicates a manually determined loop closure. (b)
Distance matrix built by the individual scene distances δij for the same
dataset. Notice that the three loop closures are clearly visible as secondary
diagonals.

that depending on how the scene similarity information is
processed further, it can be thresholded to gain a binary
decision on whether two scenes are identical. Otherwise the
continuous distance value can be used further.

Given the definition of the BRIEF-Gist descriptor, we now
want to evaluate how well it performs on the task of scene
recognition. The next two sections benchmark the descriptor
on two publicly available datasets.

IV. EVALUATION – NEW COLLEGE DATASET

To quantitatively evaluate the recognition performance
of BRIEF-Gist, we first used the recently published New
College Dataset [23].

This dataset consists of 7854 sets of panoramic im-
ages captured by a Ladybug 2 camera, where each of the
panoramic images consists of 5 single images, resulting in
a total of 39270 single images. We consider each of the
7854 panoramic images a scene. The dataset also ships with
GPS and odometry data and other information like laser scan
messages that are not of importance for our evaluation. The
images were collected on a 2.2 km long course over the
campus of Oxford New College. The dataset features several
loop closings in a dynamic environment including moving
people, as well as different types of environment (urban,
park) and changing lighting conditions.

A. Ground Truth

Unfortunately, ground truth information is not available.
GPS measurements are available for roughly only half of the
scenes, but even if GPS is available, it is often disturbed by
nearby buildings or vegetation (tree cover etc.). For our first
evaluations, we tried to use GPS as ground truth nonetheless.
We considered two scenes to be spatially equal if they were
closer than a threshold of 7.5 meters as suggested by [12].
However, we found many scenes that were rejected as false
positives by the GPS “ground truth” but were manually
confirmed to originate from the same spot in the environment
by visual inspection. We therefore decided that GPS cannot
be trusted as source of ground truth information and thus
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Fig. 2. Precision-recall curve for the New College dataset (scenes
120 . . . 1200) for the BRIEF-Gist descriptor of length 32 and different
tilings. Notice the axis scaling.

manually determined the best fitting scenes for the first part
of the dataset where the robot drove around an enclosure
inside the college complex three times (scenes 120 to 1200).

B. Methodology

For scenes 120 to 1200 we manually determined the best
matching scene for every 20th scene and linearly interpolated
between these fixed matches, assuming constant velocity of
the robot.

We calculated the BRIEF-Gist descriptor separately for
each of the 5 images associated with every scene si, resulting
in a set of descriptors Di,k with i = 120 . . . 1200 and k =
1 . . . 5. The distance in appearance space between two scenes
si and sj is given by the mean distance of their associated
descriptors:

δij =
1

5

5∑
k=1

‖Di,k −Dj,k‖H (2)

Here ‖a− b‖H indicates the Hamming distance or L1 norm
as defined in (1). Two scenes si and sj were considered
to be equal in appearance space, if their distance δij was
below a threshold τ . Precision-recall and F-score statistics
were generated by varying that threshold τ .

A scene match (si, sj) was considered a true positive if
sj lies within 7 images of the manually determined best
match for si. That corresponds to a temporal vicinity of
approximately 1.5 seconds, as the panoramic images were
captured with approximately 5 Hz.

We calculated the precision-recall statistics for varying
descriptor lengths (16, 32, and 64 Byte) and tilings (1, 3,
5, 7, 9).

C. Results

Fig. 2 and 3 show the precision-recall plots for descriptor
lengths of 32 and 64 bytes respectively. Each plot contains
the results for different descriptor tilings. Table I summarizes
the recall rates at precisions of 100% and 90%.
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Fig. 3. Precision-recall curve for the New College dataset (scenes
120 . . . 1200) for the BRIEF-Gist descriptor of length 64 and different
tilings. Notice the axis scaling. When compared to the results for the
descriptor length of 32 bytes (Fig. 2), hardly any differences are visible.

TABLE I
RECALL VS. PRECISION, NEW COLLEGE DATASET

Tiling precision 100% precision 90%
1 79% 99%
3 48% 93%
5 60% 96%
7 63% 96%
9 60% 97%

The recognition quality on this dataset is surprisingly
good. The F-score varies between 0.92 (tiling 3) and 0.97
(tiling 1). It is apparent, that neither the descriptor length, nor
the tiling has a very significant influence on the recognition
quality.

V. EVALUATION – OXFORD CITY DATASET

We conducted a second quantitative evaluation using the
Oxford City Dataset that was published for the Evaluation of
FAB-Map [4]. It consists of 1237 image pairs of two cameras
facing the forward-left and forward-right of the robot as it
was driven through the environment. The cameras captured
an image every 1.5 meter.

A. Ground Truth

For this dataset, ground truth information on the loop
closures was provided along with the dataset and is depicted
in Fig. 5(a).

B. Methodology

Similar to the evaluation on the New College dataset, we
calculated the BRIEF-Gist descriptor for the left and right
camera image separately. The distance in appearance space
between two scenes was formed by the mean of the distances
of their respective left and right descriptors.

A scene match was considered a true positive if it was
contained in the ground truth matrix. Fig. 5(a) and 5(b) show



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

Precision−Recall Curve

 

 

Tiling 1

Tiling 3

Tiling 5

Tiling 7

Tiling 9

Fig. 4. Precision-recall curve for the Oxford City Centre dataset for the
BRIEF-Gist descriptor of length 32 and different tilings.
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Fig. 5. (a) Ground truth matrix for the Oxford City Centre [4] dataset.
Red indicates a loop closure between two scenes. (b) Distance matrix built
by the individual scene distances δij for the same dataset. Notice that the
loop closure is clearly visible as secondary diagonal.

the ground truth matrix and the distance matrix calculated by
the BRIEF-Gist descriptor.

We calculated the precision-recall statistics for different
tilings for the 32 bytes long BRIEF-Gist descriptor.

C. Results

Fig. 4 visualizes the precision-recall statistics. This time,
the tiled BRIEF-Gist descriptors are clearly superior to the
non-tiled version. For the tiled versions, the F-score varies
between 0.72 and 0.75. We found the 7 × 7 tiling worked
best for this dataset, reaching 32% recall at 100% precision.
Table II summarizes the recall rates at precisions of 100%
and 90% for all tilings.

This performance is comparable to the recall rates of FAB-
Map on that dataset. Depending on the exact method chosen,
Cummins and Newman reported recall rates of 16%, 31%, or
37% for their system [4] at a precision of 100%. However,
the 37% recall was only reached using the most expensive
algorithm that takes at least 3 seconds to process a new
image. Our results show that BRIEF-Gist is able to perform
comparably well, without requiring a dedicated learning step

TABLE II
RECALL VS. PRECISION, OXFORD CITY CENTRE DATASET

Tiling precision 100% precision 90%
1 4% 25%
3 26% 53%
5 28% 59%
7 32% 60%
9 23% 58%

to acquire a visual vocabulary and without a computationally
involved probabilistic model.

VI. BRIEF-GIST IN A LARGE SCALE SLAM SCENARIO

Encouraged by the evaluation results presented in the
previous sections, we wanted to determine if BRIEF-Gist
was capable of serving as a front-end in a pose graph SLAM
system, solving a large-scale problem.

A. The St. Lucia Dataset

The St. Lucia dataset originally published by Milford et
al. [13], consists of 58,758 images taken by a webcam that
was mounted on top of a car. The images were collected on
a 66 km long course along the roads in St. Lucia, a suburb
of Brisbane, Australia. The material (1:40 hours in total)
features a dynamic urban environment, changing lighting
conditions and many loop closures of different length. Except
the video footage, no other sensor information (no odometry,
no GPS etc.) is available.

Except the missing ground truth information, we find
the dataset is very suitable to evaluate the robustness of
BRIEF-Gist. In contrast to the New College dataset, the place
recognition system does not have to recognize places that are
approached or traversed from different directions. When re-
visiting certain streets in the environment, the car always
drives in the same direction. Notice that this can be seen
as a general weakness of BRIEF-Gist and other appearance-
based place recognition systems that use the appearance of
the whole scene to perform recognition: They are (in contrast
to FAB-Map that relies on distinct landmarks) not invariant
to traversal direction.

B. Methodology

We calculated the BRIEF-Gist descriptor with 7× 7 tiles
for every 5th image of the dataset and calculated the dis-
tances between all descriptors. Coarse odometry information
was extracted from the images using image profile matching.
We used a very similar technique as described in [13], but
improved it slightly. Details can be found in [24]. Although
this technique is rather simple, the extracted inter-frame
motion estimates provide sufficient metric information for
the SLAM back-end.

C. A Robust Back-End for SLAM

Given the simplicity of BRIEF-Gist and the results of the
evaluation presented before, we cannot guarantee the place
recognition to reach a precision of 100%. A certain amount
of false positive loop closure detections has to be expected.
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Fig. 6. Final map of St. Lucia. The trajectory is shown in red. Green links
indicate false positive loop closures that were erroneously identified by the
front-end based on BRIEF-Gist. Our optimization based back-end is robust
against erroneous loop closures and correctly rejected them.

Therefore, the back-end of the SLAM system has to cope
with these errors. In parallel work, we developed a robust
back-end for pose graph SLAM (based on efficient sparse
optimization techniques like [7] or [10]) that is capable of
identifying and rejecting these false positive loop closures as
part of the optimization process itself. We refer the reader
to the appendix for a short introduction to the system.

D. Results

Fig. 6 shows the resulting map after performing SLAM
on the whole dataset. As ground truth information are not
available, we can only provide a qualitative analysis of the
results.

It is apparent that the general structure of the environment
has been correctly captured. No false loop closings are
present. The front-end based on BRIEF-Gist identified a
number of false positive loop closures that were rejected by
the back-end during the optimization process. These false
positive loop closures are visible as green links in the map
of Fig. 6. Some examples of wrongly matched images are
shown in Fig. 8.

A small number of loops have not been closed, these are
false negative loop closures. In these cases, BRIEF-Gist was
not able to recognize the scenes.

The vast majority of the loop closures in the dataset
was correctly recognized. This is especially impressive as
the scenes over the dataset are visually very similar and
ambiguous. Fig. 7 shows a number of exemplary true positive
place recognitions.

VII. DISCUSSION

We presented BRIEF-Gist, a simple scene descriptor based
on the BRIEF keypoint descriptor by Calonder et al. [3].

(a) (b)

(c) (d)

Fig. 7. Examples for correctly matched scenes from the St. Lucia dataset
[13]. Despite the significant change in appearance (lighting conditions,
moved cars), BRIEF-Gist is able to correctly recognize these scenes and
matched the images from (a) with (b), and (c) with (d).

(a) (b)

(c) (d)

Fig. 8. Examples for erroneously matched scenes (false positives) from
the St. Lucia dataset [13]. BRIEF-Gist incorrectly matched scenes (a) with
(b), and (c) with (d) .

Our evaluation showed that it can compete with state-of-the-
art appearance-based place recognition systems like FAB-
Map [4]. In contrast to FAB-Map, BRIEF-Gist can be easily
implemented, is computationally simple and does not require
a learning phase to acquire a vocabulary of visual words.
Table III shortly compares BRIEF-Gist and FAB-Map with
regard to features and requirements.

BRIEF-Gist is – to a certain extend – invariant to to
rotation and displacement, although the BRIEF keypoint
descriptor is not. This is because downsampling the input
images involves smoothing and interpolation over neighbour-



TABLE III
FEATURE COMPARISON

Invariancy BRIEF-Gist FAB-Map [4]
lighting conditions yes yes
traversal direction no yes

small / large rotations yes / no yes / yes
small / large displacement yes / no yes / yes

Requirements
learning phase no yes

complex implementation no yes
Results

Oxford City Dataset recall 32% recall 16% / 31% / 37%
large-scale SLAM yes yes

ing regions in the image. The invariancy is expected to be
largest for the non-tiled version of BRIEF-Gist. Invariancy
to global changes in the lighting conditions is given because
BRIEF is based on a mere comparison of pixel intensity
values. The result of these comparisons is not affected by
a global change in illumination. We already explained that
BRIEF-Gist, like any other place recognition system based
on the appearance of the scene as a whole, is not invariant
to the direction a scene is traversed. This is in contrast to
systems like FAB-Map that work with distinct landmarks.
In other words, if the same place is traversed twice, but in
different directions, BRIEF-Gist cannot recognize the second
encounter as a known place, while FAB-Map can.

We successfully showed that BRIEF-Gist can perform
place recognition in the front-end of a pose graph SLAM
system in a demanding large-scale SLAM scenario.

In parallel work, we developed a robust optimization-
based back-end for pose graph SLAM (see the appendix).
Our robust back-end is able to cope with a reasonable
number of outliers in the data association, i.e. erroneous loop
closure requests. This robustness and the back-end’s ability
to reject any data association decisions made by the front-end
eliminates the need to reach 100% precision (i.e. not a single
wrong data association decision) in the place recognition
stage. The front-end can therefore be kept simple with regard
to computational demands and complexity of the implemen-
tation, making BRIEF-Gist a well-suited alternative to more
complex systems.
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APPENDIX

In the following we want to shortly introduce our novel
robust pose graph SLAM back-end that is based on nonlinear
optimization. In contrast to state-of-the-art methods it is, as
we have seen above, highly robust against errors in the data
association that arise for instance through false positive loop
closures.

Fig. 9. Factor graph of the standard pose SLAM problem with odometry
factors between successive poses and loop closures between (x1, x101) and
(x3, x103).

A. A General Problem Formulation for Pose Graph SLAM

In the usual probabilistic problem formulation for pose
graph SLAM, the goal is to find the optimal (maximum
a posteriori) estimate of robot poses X given a set of
constraints U = {uij} such that

xj = f(xi, uij) + wij (3)

where f is the motion model and wij is a zero-mean Gaus-
sian with covariance Σij . The probability over all variables
xi and constraints uij is then expressed by

P (X,U) ∝
∏
i

P (xj |xi, uij) (4)

Notice that there are two kinds of constraints uij : Odometry
constraints between successive poses (where j = i+ 1) loop
closure constraints uij that connect non-successive poses and
have been determined e.g. by visual place recognition in the
front-end.

The optimal estimate on the robot poses, X∗, can be
determined by maximizing the joint probability from above:

X∗ = arg max
X

P (X,U)

= arg min
X
− logP (X,U)

= arg min
X

∑
ij

‖f(xi, uij)− xj‖2Σij
(5)

Here ‖a − b‖2Σ denotes the squared Mahalanobis distance
with covariance Σ, i.e. ‖a− b‖2Σ = (a− b)T Σ−1(a− b).

Given the above formulation, solving (5) and thus finding
X∗ is left to the back-end. Fig. 9 shows a representation
of the problem as a factor graph [9]. Here, the large nodes
are the variables xi and the edges represent the probabilistic
constraints (factors) uij between these variables.

B. Discussion

The above formulation reveals a major problem of current
approaches to graph based SLAM. The back-end optimizer
has to rely heavily on the front-end to produce a topologically
correct factor graph. If the data association step in the front-
end fails and erroneously detects a loop closure between two
poses xl and xk, a factor ulk is introduced between the two
corresponding nodes in the factor graph. This factor forces
the optimizer to map the two poses onto each other, which
will very likely lead to divergence and a defective solution.

A typical strategy to avoid such failures is to apply a so-
phisticated data association technique. A common approach



based on maximum likelihood and mutual compatibility is
the joint compatibility branch and bound algorithm (JCBB)
[15]. Olson et al. proposed a compatibility check based on
graph partitioning (SCGP) [19], while Cadena et al. use
Conditional Random Fields [2]. FAB-Map [4], a probabilistic
method for matching scenes in appearance space, is also
capable of constructing the loop closure constraints necessary
for pose graph SLAM.

However, none of the current data association techniques
is guaranteed to work perfectly, i.e. none is guaranteed to
reach a precision of 100%. As even a single wrong loop
closure constraint can cause the whole SLAM system to fail,
the back-end should not have to rely solely on the front-end
data association. It should rather be able to change the data
association decisions made by the front-end, if they appear
to be false at a later time during the optimization.

Our main idea is that the topology of the graph should
be subject to the optimization instead of keeping it fixed. If
the outlier edges representing data association errors could
be identified and removed during the optimization process,
the topology could be corrected and thus a correct solution
could be reached.

To achieve this, we extend the pose graph SLAM formu-
lation and introduce another kind of variable, the so called
switch factors. Each of these switches can be understood
to act as an variable additional weight on one of the loop
closure constraints, with weight values in the interval (0, 1).

The rest of this section explains the details of the imple-
mentation.

C. The Robustified Formulation for Pose Graph SLAM

We reformulate (3) and interpret the constraints ui (with
a single index) as control inputs (i.e. odometry readings)
between successive poses:

xi = f(xi−1, ui) + wi (6)

The front end can request a loop closure uij between two
non-successive poses xi and xj such that:

xj = f(xi, uij) + λij (7)

As above, f is the motion model while wi and λij are zero-
mean Gaussian noise terms with covariances Σi and Λij

respectively.
We now introduce a second set of variables S = {sij}.

Each sij acts as a switch that controls whether the loop
closing constraint uij (that was proposed by the front-end)
between xi and xj is accepted by the optimizer or discarded
and thus deactivated. Notice that by far not all possible sij
will exist but only those that were proposed by the front-
end. The back-end can only deactivate the given loop closure
candidates, but never introduce new ones.

Finally, we need to explicitly model a set of switch prior
factors Γ = {γij} which we explain later on.

Fig. 10 illustrates the general structure of the extended
graph.

Fig. 10. Factor graph of the proposed extended problem formulation.
Depending on the values assigned to the switch variables (sij shown
in green), the loop closure factors (yellow) can be dynamically removed
from the graph representation during the optimization process. The switch
variables (green) are governed by their prior factors (red) that penalize the
deactivation of loop closures.

The joint probability over all variables X , S and measure-
ments U , Γ is given by

P (X,S,U,Γ) ∝
∏
i

P (xi|xi−1, ui)

·
∏
i,j

P (xj |xi, uij , sij)

·
∏
i,j

P (sij |γij)

(8)

We now seek the optimal solution to X and S, namely

X∗, S∗ = arg max
X,S

P (X,S,U,Γ)

= arg min
X,S
− logP (X,S,U,Γ)

= arg min
X,S

∑
i

‖f(xi−1, ui)− xi‖2Σi

+
∑
i,j

‖h(xi, xj , uij , sij)‖2Λij

+
∑
i,j

‖γij − sij‖2Ξij

(9)

Here f is the motion model as before. The function h
and the term γij in the above expressions need further
explanation.

1) The Loop Closure Factor: We define h as

h(xi, xj , uij , sij) = sig(sij) · (f(xi, uij)− xj) (10)

where uij is the spatial displacement between xi and xj
as indicated by the loop closure detection of the front-end.
Furthermore,

sig(a) =
1

1 + e−a
(11)

is the sigmoid function, which implements the desired
“switching” behaviour: If sij indicates an active loop closure
then sig(sij) ≈ 1. Thus h penalizes any spatial distance
between f(xi, uij) and xj and therefore drives the optimizer
towards exactly aligning two poses that are connected by
a loop closure constraint. By driving sij towards negative
values, the optimizer can “switch off” the loop closure
constraint, because in this case sig(sij) ≈ 0 and the spatial
distance between f(xi, uij) and xj does not add to the global
error terms.

The effect of the switch variable can also be understood
as acting upon the entries of the information matrix Λ−1

ij



that is associated with the loop closure constraint via the
Mahalanobis distance ‖h(xi, xj , uij , sij)‖2Λij

. Using (10),
the definition of the Mahalanobis distance, and the fact that
sig(sij) is a scalar we can write

‖h(xi, xj , uij , sij)‖2Λij
= [sig(sij) ·A]

T
Λ−1
ij [sig(sij) ·A]

= AT
[
sig(sij)

2 · Λ−1
ij

]
A (12)

with A = f(xi, uij)−xj . In this interpretation, if the variable
sij is driven towards negative values, sig(sij) ≈ 0 and thus
the resulting information matrix

[
sig(sij)

2 · Λ−1
ij

]
will be

close to zero. This however, informally expresses that the
constraint A is to be ignored, because literally nothing is
known about it, or in other words, the associated uncertainty
approaches infinity.

Both interpretations, driving the information measure or
the resulting error towards zero, topologically correspond to
removing the associated edge from the graph that represents
the optimization problem.

2) The Switch Prior Factor: The term γij constitutes
the prior value of the associated switch factor sij . In our
experiments, we set all γij = 10, as sig(10) ≈ 1. This
means that we initially accept all loop closure constraints
that were proposed by the front-end. During the optimization
the Mahalanobis distance ‖sij − γij‖2Ξij

in (9) penalizes the
deviation of sij from its initial value γij and thus penalizes
the deactivation of a loop closure.

D. Implementation and Parameters
We implemented our approach to a robust back-end in C++

using the GTSAM framework that is available upon request
from the group of Frank Dellaert1. There is only one free
parameter that needs to be set: The covariance matrix Ξ is
used in the similarity constraint ‖sij − lij‖2Ξij

in (9): It is
a one-dimensional variance measure and was empirically set
to Ξ = 202 for all experiments described in this paper. Ξ
controls the penalty for switching off a loop closure during
the optimization. The other covariance matrices Λ and Σ are
used to calculate the Mahalanobis distances in the odometry
and loop closure factors and have to be provided by the
front-end.

All experiments were conducted in an incremental fashion,
i.e. data was fed into the optimizer 200 frames at a time, in
contrast to performing batch optimization.

E. Conclusions
Our modified problem formulation can be understood

as transferring parts of the responsibility for correct data
association from the front-end into the back-end. The back-
end optimizer can now change the topological structure of the
pose graph representation during the optimization process.
Therefore, it can account for possible data association errors
and ignore erroneous loop closure constraints. As the overall
SLAM system becomes tolerant and robust against errors
in the data association, a reasonable false positive rate is
acceptable (precision < 100%) and the data association
algorithm and can be kept comparably simple.

1https://collab.cc.gatech.edu/borg/gtsam/
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