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Abstract— Reliable vehicle positioning is a crucial require-
ment for many applications of advanced driver assistance
systems. While satellite navigation provides a reasonable perfor-
mance in general, it often suffers from multipath and non-line-
of-sight errors when it is applied in urban areas and therefore
does not guarantee consistent results anymore. Our paper
proposes a novel online method that identifies and excludes
the affected pseudorange measurements. Our approach does
not depend on additional sensors, maps, or environmental
models. We rather formulate the positioning problem as a
Bayesian inference problem in a factor graph and combine
the recently developed concept of switchable constraints with
an algorithm for efficient incremental inference in such graphs.
We furthermore introduce the concepts of auxiliary updates and
factor graph pruning in order to accelerate convergence while
keeping the graph size and required runtime bounded. A real-
world experiment demonstrates that the resulting algorithm is
able to successfully localize despite a large number of satellite
observations are influenced by NLOS or multipath effects.

I. INTRODUCTION

Accurate and reliable positioning is a key prerequisite
for many applications of advanced driver assistance systems
(ADASs) in the automotive domain, intelligent transporta-
tion systems (ITSs) or location based services (LBSs) for
pedestrians. Such applications, e.g. road charging [1] or
dangerous good transports, rely on stable, precise, and up to
date estimates of the current position of the vehicle or user.
Consumer-class receivers for satellite navigation systems,
e.g. GPS or GLONASS, are inexpensive and highly inte-
gratable and provide road-level accurate position estimates
under good conditions. However, especially in urban areas,
non-line-of-sight and multipath effects remain a constant
challenge and lead to heavily biased and unreliable position
estimates. Multipath effects occur when satellite signals are
received multiple times, e.g. directly and via reflections on
buildings or the ground. If the signal is solely received via
reflections, the term non-line-of-sight (NLOS) observation
is used instead. Fig. 1 illustrates both situation. Since both
effects cause highly erroneous position estimates, it is neces-
sary to remove the affected pseudorange observations before
attempting to solve for the receiver’s position.

In this paper we therefore propose a novel online method
to identify and remove multipath or NLOS measurements.
Our method uses only the pseudorange data from the GNSS-
receiver. No additional information (e.g. velocity or yaw
rate) or models (e.g. a map containing the road layout or
information on the building structure) are needed.

All authors are with the Faculty of Electrical Engineering and Information
Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
niko.suenderhauf@etit.tu-chemnitz.de

(a) (b)

Fig. 1. The non-line-of-sight (left) and the multipath (right) problem are
two common challenges for urban satellite-based positioning. In both cases,
the resulting position estimate will be heavily biased.

We model the GNSS-based positioning problem as a factor
graph problem and show how it can be solved incrementally,
i.e. in an online fashion. Our paper applies the concept of
switchable constraints [2], [3] that were recently introduced
in the domain of SLAM (Simultaneous Localization and
Mapping) in autonomous robotics as a tool for solving factor
graph problems in the presence of outlier measurements.

This paper also extends our previous work [4] on multipath
and NLOS mitigation where we applied a batch solver with
our switchable constraints and pointed out that in order to
be qualified for real-world applications, the method has to
be transferred to an online, incremental solver.

We will begin our paper with a short review of related
work, factor graphs, inference methods and the concept of
switchable constraints. We then explain how to formulate
the positioning problem using the factor graph framework
and describe the extensions to iSAM2 [5], the factor graph
inference algorithm utilized here. The evaluation of the
algorithm on a real-world dataset and discussions conclude
the paper.

II. RELATED WORK

Different approaches for multipath mitigation are known to
the literature, besides expensive hardware-related approaches
like using special antenna designs (e.g. choke ring) or
antenna arrays. For instance [6] discusses the application
of RAIM (Receiver Autonomous Integrity Monitoring) that
is however limited to exclude only single satellites from
the solution. [7] proposes to actively determine occluded
satellites with the help of an omnidirectional infrared camera
mounted on the vehicle which is disadvantageous because
an additional sensor is required. [8] proposes to identify
multipath observations by using information about the local



building structure, i.e. a database of building positions and
dimensions. Although this approach worked well, it requires
a large knowledge base of accurate 3D building structure
information that has to be kept up to date.

III. FACTOR GRAPHS AND SWITCHABLE CONSTRAINTS

Factor graphs are bipartite undirected graphs and have
been proposed by [9] as a general tool to model factorizations
of large functions with many variables into smaller local
subsets. The idea can be applied to general probabilistic
estimation problems where the joint conditional probability
distribution one wants to estimate can be expressed as a
product over several single factors. These factors are formed
according to the dependency structure between the hidden
variables X and the given evidence Z (e.g. measurements or
a-priori knowledge):

P (X|Z) =
∏
i

Pi(X̄i|Z̄i) (1)

where X̄i ⊆ X and Z̄i ⊆ Z are arbitrary subsets of X and Z
respectively. If we assume that Z contains the pseudorange
measurements from the observed satellite and X represents
the vehicle poses we immediately see that the GNSS-based
positioning problem can be formulated and solved within the
general factor graph framework.

Factor graphs are bipartite by definition, i.e. they contain
two sets of nodes: one for the hidden variables and the other
for the probabilistic relations (the factors) between them.

A. Finding the Maximum a Posteriori Solution

The maximum a posteriori (MAP) estimate of the distribu-
tion P (X|Z), i.e. the most likely variable configuration X ∗
given the data Z , is formalized as an optimization problem
of the form

X ∗ = argmax
X

P (X|Z) = argmax
X

∏
i

Pi(X̄i|Z̄i) (2)

If the single factors Pi are Gaussian, they are of the general
form

Pi(X̄i|Z̄i) = η exp−1

2
‖ei(X̄i, Z̄i)‖2Σi

(3)

where ei(X̄i, Z̄i) is a problem-specific error function. Using
this relation and taking the negative logarithm, we can
transform (2) into

X ∗ = argmin
X

∑
i

‖ei(X̄i, Z̄i)‖2Σi
(4)

which is a least squares optimization problem, since we seek
the minimum over a sum of squared terms.

Such problems can be solved using a variety of methods
like Levenberg-Marquardt, Gauss-Newton or Powell’s Dog-
Leg. These approaches iteratively solve the problem by
repeatedly linearizing it and updating the current estimate
of X ∗ until convergence. At their heart, these methods rely
on a factorization (either QR or Cholesky) of the Jacobian
associated with the factor graph. Specialized solvers that
exploit the sparse nature of the factorization (i.e. the sparse
structure of the Jacobians) can solve typical problems with

thousands of variables very efficiently. Examples for conve-
nient C++ frameworks that contain such solvers and can be
easily applied to a number of different problem domains are
g2o [10] or GTSAM [11].

B. iSAM2 - Incremental Inference in Factor Graphs

In general, factor graph problems can be either solved
in batch mode or incrementally. The difference is that a
batch solver uses all available measurements and solves the
complete graph at once. In contrast, incremental methods
are able to efficiently update the graph (i.e. incorporate
new measurements) and calculate a new estimate online,
after each update step. Such incremental solvers have been
explored by Kaess et al. who introduced the iSAM [12]
algorithm (incremental smoothing and mapping) and more
recently iSAM2 [5].

Their key insight was that the sparse QR or Cholesky
factorization that lies at the heart of batch solvers like
Levenberg-Marquardt or Gauss-Newton is equivalent to con-
verting the factor graph into a Bayes net via an elimination
algorithm. The resulting Bayes net can be further converted
into a new data structure coined the Bayes tree [13] by
discovering the cliques in the Bayes net. This tree structure
allows particularly easy and efficient incremental updates
and inference. That is, new factors can be added and a new
updated estimate X ∗ is calculated where only the necessary
parts of the tree are re-evaluated.

For more details we have to refer the reader to [5] which
gives an elaborate description of iSAM2 and the Bayes tree.

C. Outliers in Factor Graphs

Let us now consider the case that some of the terms ei that
constitute the error functions in (4) are outliers. In general,
outliers are caused by observations or measurements that
violate the assumed underlying error model (e.g. a zero-mean
Gaussian noise model) of the sensor or the measurement
process. In the context of GNSS-based localization, such
outlier constraints are caused by the non-line-of-sight or
multipath observations that frequently occur in urban areas.

It is well known that outliers in least squares optimization
problems cause biased and erroneous solutions. Different
techniques have been developed to detect and remove outliers
before the optimization step. A commonly known example
is RANSAC that can be best applied in model-fitting or
regression but is unsuitable for the factor graph problems
that are in the focus of our paper.

D. Switchable Constraints

In earlier work [2], [3] we developed the switchable con-
straints, a specialized approach to detect and remove outlier
constraints from factor graph problems. We also successfully
applied it to the domain of GNSS-based positioning [4]. This
section shortly summarizes the key ideas, but we refer the
reader to our previous publications for more details.

The general idea behind the switchable constraints is to
make the topology of the factor graph partially variable
and subject to the optimization. This way, factors can be



removed from the problem formulation as part of the infer-
ence process. This is achieved by augmenting the original
optimization problem (4) by a new set of hidden variables.
In addition to X ∗ the augmented problem also estimates a
set of so called switch variables S.

Each switch variable si ∈ R is associated with a constraint
ei that could potentially be an outlier. Depending on its
value, the switch variable can downweight, i.e. suppress or
completely remove its associated constraint from the factor
graph via a multiplicative switch function Ψ : R→ [0, 1].

The original optimization problem in (4) in its augmented
form is given as:

X ∗, S∗ = argmin
X

∑
i

‖Ψ(si) · ei‖2Σi︸ ︷︷ ︸
Switchable Constraints

+
∑
i

‖esp
i ‖

2
Ξi︸ ︷︷ ︸

Switch Prior Constraints
(5)

Different switch functions Ψ can be defined, e.g. a step
function, or a sigmoid. However, our earlier work showed
that a simple linear function is a suitable choice and superior
to the previously proposed sigmoid function [3].

To summarize, the idea behind the switchable constraints
is that single factors can be removed during the inference
process by driving the associated switch variable si to a value
so that Ψ(si) ≈ 0. This way, the inference algorithm can
exclude outlier measurements and converge towards a correct
solution.

IV. GNSS POSITIONING AS A FACTOR GRAPH PROBLEM

Estimating the receiver position from a set of satellite
observations is essentially a least squares optimization prob-
lem that can be expressed in a factor graph formulation.
Following the notation from above, the measurements Z
will be the pseudorange readings from individual satellites
and the unknown variables X comprise at least the receiver
position and the clock bias.

This section explains in detail how we modelled the
positioning problem using factor graph notation. Fig. 2
illustrates the factor graph, showing the variables in large
vertices and the factors between them with small vertices.
The optimization problem expressed by the graph is solved
incrementally and online using the iSAM2 algorithm [5]
which was shortly explained in the previous section.

A. Involved Variables

The state space of the GNSS-based positioning problem
contains at least the 3D position (x, y, z)T of the vehicle and
the receiver clock error δ, leading to a state space that is at
least 4-dimensional.

In the work described in this paper we extended this state
space by jointly estimating the vehicle velocity v, and the
clock error drift δ̇, leading to an 6-dimensional state space
vector x = (x, y, z, v, δ, δ̇)T.

To address a subset of the complete state space, we will
use a superscript notation in the following. E.g. we will write
xx,y,zt to address the vehicle position at time t.

B. The Switchable Pseudorange Factor
A number of satellites are observed from every vehicle

state xt, each providing a pseudorange measurement ρtj .
Given the receiver position xx,y,zt and the position of the
observed satellite xSAT

tj , the expected pseudorange measure-
ment is given by the measurement function

h(xt, j) = ‖xSAT
tj − xx,y,zt ‖+ δEarthRotation + δAtm + xδt (6)

The terms δEarthRotation and δAtm correct ranging effects caused
by the earth’s rotation and atmosphere (ionospheric and
tropospheric propagation errors).

If we assume the measured pseudorange ρtj is given by the
measurement function h(xt, j) plus a zero-mean Gaussian
error term, then the (switchable) error function of a single
pseudorange factor is given as

‖eSPR
tj ‖2Σtj

= ‖Ψ(stj) · (h(xt, j)− ρtj)‖2Σtj
(7)

Since every pseudorange measurement is a potential outlier
(it could be affected by NLOS or multipath erros), we make
each pseudorange factor switchable as described in section
III-D. Notice in Fig. 2 that an additional switch prior factor
fSP is used as a soft constraint that tries to anchor each
switch variable in its original “on” position at a value of
γtj = 1.

C. The Motion Model Factor
A variety of motion models can be applied in the context

of vehicle localization or motion estimation. For instance,
[14] lists and evaluates six different types. Although a
constant velocity and turn rate model (CTRV) seems to be
a suitable choice to describe the behaviour of a moving
vehicle, close inspection and practical experience reveals
that a constant velocity (CV) model is more suitable in
our scenario. The main reason for this is that no odometry
information (i.e. velocity and yaw rate) from the vehicle are
available to support the estimation of heading, velocity and
yaw rate. The only sensor information used in our work are
the pseudorange readings from the observed satellites.

Although even under these conditions, a CTRV model is
still able to estimate all of velocity, heading and turn rate
well while the vehicle is moving, the model breaks when the
vehicle stops, e.g. at traffic lights. In this case, estimating
the turn rate and heading from the pseudoranges alone is
extremely error-prone and a random walk, i.e. a constant
position (CP) model, describes the estimated behaviour of
the vehicle better than CTRV or CV. We expect the best
method to be using a switching model or mixture approach.
In the context of factor graph inference, [15] proposed a
max-mixture approach that could be of use here.

To summarize these considerations, we apply a constant
velocity (CV) model, that is a good compromise between
the CTRV and CP models and works well while the vehicle
is moving and stopped. The error function for the constant
velocity motion model factor is thus given as:

‖eCV
t ‖2ΣCV

t
=

∥∥∥∥∥
(√
‖xx,yt − xx,yt+1‖2

xvt

)
−
(

xvt∆t
xvt+1

)∥∥∥∥∥
2

ΣCV
t

(8)



Fig. 2. The factor graph layout used in this work. Large vertices represent
unknown variables, while small vertices illustrate the different factors for
the switchable pseudorange (fSPR), switch prior (fSP), constant clock error
drift (fCCED), and constant velocity (fCV) models. Notice that the plate
representation (the rectangle around fSPR and st,j ) implies that all factors
and variables inside the plate are present n times. These correspond to the
n pseudorange measurements taken at time t.

D. The Clock Error Drift Factor

To account for the drift in the receiver clock error, we
apply a constant drift model. Therefore, the error function
associated with the constant clock error drift factor is

‖eCCED
t ‖2ΣCCED

t
=

∥∥∥∥∥
(

xδt + xδ̇t∆t

xδ̇t

)
−
(

xδt+1

xδ̇t+1

)∥∥∥∥∥
2

ΣCCED
t

(9)

ΣCCED
t = diag(σClock

t , σClockDrift
t ) is the covariance matrix

associated with the state transition factor at time t.

V. USING ISAM2 WITH SWITCHABLE CONSTRAINTS
FOR ONLINE PROCESSING

This section describes two novel adaptations of the orig-
inal iSAM2 algorithm we conducted in order to perform
incremental inference in the context of GNSS-based position-
ing. These adaptations comprise the pruning of the Bayes tree
and a strategy to perform additional or auxiliary updates of
the factor graph and the Bayes tree to accelerate convergence.
Notice that both ideas can be applied whenever iSAM2 is
used to perform sensor fusion with factor graphs. We used
the iSAM2 implementation available as part of GTSAM [11]
as the basis for our own code.

A. Auxiliary Factor Graph Updates

In its original description in [5] and its implementation in
GTSAM [11], the iSAM2 algorithm performs only a single
update on the estimate X whenever new factors are added.
That is, X is not repeatedly updated until convergence, but
rather only a single update step X + ∆ is performed. While
this behaviour is suitable for the context of SLAM in robotics
iSAM2 was developed for, it is clearly suboptimal for sensor
fusion applications which are in the focus of this paper.

The reasons for that suboptimality become clear if we
understand that in the context of sensor fusion, subsequent

algorithms and applications depend on the quality of the
estimate of the most recent variable xt. Therefore, we require
the estimate of xt to have converged before we move on
and add measurements taken at the next time step t + 1.
With the original iSAM2 algorithm, xt usually converges
only after several update steps, i.e. at time t+n. How many
additional time steps n are necessary until convergence of
xt occurs, depends on the general convergence properties of
the problem, nonlinearities, initial guesses and so on.

To achieve immediate convergence of xt, we perform
a number of auxiliary updates after xt was added. Each
auxiliary update adds an auxiliary variable to the factor graph
and performs the normal iSAM2 update step. We abort this
process when the current estimate of xx,y,zt does not differ
by more than 0.5 m compared to the estimate of the previous
auxiliary update or when a maximum number (set to 15) of
auxiliary updates has been performed. The added auxiliary
variables are removed during the next update cycle.

B. Pruning of the Factor Graph and Bayes tree

In order to keep the depth of the Bayes tree and thus the
required update time bounded, we prune old variable vertices
and their associated factors. Not doing so would result in
a Bayes tree growing linearly over time as new vertices
are added with every measurement. Although iSAM2 would
not necessarily re-evaluate old vertices in the tree during
inference, the required update time still scales linearly with
the variables in the tree.

Vehicle position vertices (xx,y,zt ) in the factor graph and
Bayes tree are pruned depending on their age and on their
spacial distance to the most current variable. We remove all
vehicle variables that are older than 35 measurement cycles
or further away than 25 meters. Other vertices, i.e. those
involving the variables st,j , xδt , xδ̇t and xvt are pruned when
the vehicle variable they are connected to is deleted.

Notice that both parameters mainly influence the runtime
of the algorithm, but not so much the quality of the results.
They were set empirically without exhaustively searching for
the best values to avoid overfitting.

VI. EVALUATION

The previous sections described how the GNSS-based
positioning problem can be formulated using the factor graph
framework and how switchable constraints are in general
able to identify outliers during inference in such graphs. We
furthermore described iSAM2, an algorithm for incremental
inference and two novel adaptations to it which enable the
application of factor graphs in online sensor fusion problems.

This section will present results from an evaluation con-
ducted on a real-world dataset.

A. The Chemnitz City Dataset

For the evaluation of our proposed approach to robust
NLOS and multipath mitigation, we used the Chemnitz City
Dataset which already served as a benchmark in our earlier
work [4]. The dataset consists of pseudorange measurements
collected by a consumer-class GPS device (u-blox LEA4-T)



TABLE I
PARAMETERS USED IN THE EVALUATION.

Parameter Value Description

γtj 1.0 switch prior value
Ξtj 1.0 switch prior covariance

Σtj (10m)2 cov. of pseudorange measurements
ΣCCED

t diag(0.001 s, 0.25 s
s
)2 clock error drift factor covariance

ΣCV
t diag(0.01m, 8 m

s
)2 CV motion model covariance

that was mounted in a vehicle. Data was recorded during a
36 minutes long drive while the vehicle crossed a large road
junction in the city center many times. Due to the many tall
buildings nearby, massive multipath and NLOS effects occur
over most parts of the trajectory. Notice that no velocity or
yaw rate information from the vehicle were used to support
the positioning. However, as usually done, all satellites with
an elevation of < 15 ◦ above the horizon have been removed.
Except for this, no other preprocessing has been conducted.

Highly accurate ground truth data was provided by a
centimeter-precision NovAtel SPAN GPS/INS with RTK
support running at 50 Hz update rate.

B. Used Parameters

Table I lists the different parameters that were used in the
implementation. The values in the upper part of the table
correspond to the same parameters of the robust back-end
we encountered in the SLAM (Simultaneous Localization
and Mapping) context where the concept of switchable
constraints was originally developed. They were chosen to
have the same values as in our earlier work [2], which
underlines that the proposed approach is generic and domain-
independent. The values for the parameters in the lower
part of the Table I are problem specific and were chosen
in correspondence to the values used in our earlier work [4]
describing the batch solution.

C. Results

1) Trajectory Errors: The trajectory estimated by our
proposed system of iSAM2 with switchable constraints is
plotted in Fig. 3 along with the ground truth trajectory and
the results of the non-robust naive least squares solution.
The latter is massively biased from NLOS and multipath
effects while our robust approach is able to maintain a good
estimate of the vehicle’s position over the whole course of
the experiment.

The trajectory errors, i.e. the distance between the esti-
mated vehicle position and ground truth position, are com-
pared in Table II for the different approaches. Notice that the
blue and red plots in Fig. 3 correspond to the first and third
row in Table II that respectively use the same color.

In the top row (blue) the median, mean, and maximum
errors are given for the naive least squares approach that uses
merely the pseudoranges to estimate the vehicle position.
Due to the various NLOS and multipath effects in the chosen
scenario, the errors are extremely high. The second row
repeats the results gained by our previous work [4] that
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Fig. 3. The ground truth trajectory (green) overlaid with the estimated
trajectory of our proposed robust approach using iSAM2 with switchable
constraints (red). The blue trajectory is the solution of the non-robust naive
least squares result that is heavily biased due to multipath and NLOS effects.
The benefit of our method compared to the non-robust solution is clearly
visible.

TABLE II
TRAJECTORY ERRORS AND CONVERGENCE TIME FOR DIFFERENT

METHODS ON THE CHEMNITZ CITY DATASET.

Method Median [m] Mean [m] Max [m] Time [s]

Pseudorange only 21.79 33.37 171.64 1.2

Robust batch [4] 2.45 2.96 16.31 66.9
Proposed approach 2.55 3.21 21.04 845

Control experiment 1 22.02 33.39 172.32 516
Control experiment 2 2.88 12.51 310.25 665

used a batch optimizer based on g2o [10] extended by
the proposed switchable constrains. The third row (in red)
finally lists the results obtained with the incremental online
approach proposed in this paper.

It is apparent that the incremental solution proposed here
is only slightly less accurate than the robust batch solution
we reported in earlier work [4]. This is a remarkable result,
since it proves that the robustness against outliers gained by
the switchable constraints is not dependent on performing a
batch optimization. It can rather be applied in an incremental
fashion as well.

The last two rows in Table II show the results obtained by
two control experiments. The first one used the same factor
graph layout (i.e. pseudorange, motion model and clock
bias drift factors) except for the switchable constraints. This
experiment was conducted to show that the motion model
or clock bias drift factors alone are not able to mitigate the
various multipath and NLOS effects and that it is indeed
the switchable constraints that are responsible for the good
results from the third row. The second control experiment
corresponds to the factor graph with the switchable con-
straints, but without the motion model. Here we see that
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Fig. 4. Trajectory errors along with the estimated 2σ and 3σ bounds.
99.56% of all position estimates are within the 2σ boundary.
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Fig. 5. Histogram over the values of the switch variables stj . Notice
that most switch variables are either approximately 1 or 0, but almost
no intermediate values exist. This means that the optimizer very clearly
“decided” whether a satellite observation should be regarded as an outlier
or an inlier.

while the median error is almost equal to the proposed
method (red), without the motion model there are a number
of bad estimates that dramatically increase the mean and
maximum errors. Thus we conclude that the motion model
has a stabilizing effect on the estimation problem and helps
identifying the satellite observations influenced by NLOS
and multipath effects.

2) Runtime: All experiments were conducted on the same
Intel Core2-Duo machine in order to compare the required
runtime. From Table II we see that the proposed incremental
approach takes much longer than both the naive and the
robust batch solution. However, we see that the achieved
frame rate is still high enough to be feasible for real-world
application since it is two times faster than real-time.

3) Position Estimate Integrity: Fig. 4 shows the position
errors over time, along with the estimated 2σ and 3σ bounds.
It is apparent that the error bounds are estimated rather
conservatively, since 95.8% of all position estimates are
within the 1σ boundary, 99.7% are within the 2σ boundary,
and 100% lie inside the estimated 3σ interval.

4) Switch Variables: A histogram over the estimated
values of the switch variabes stj is shown in Fig. 5. From the
clear bimodal nature of the histogram we can conclude that
the proposed system is able to clearly distinguish outliers
(with a value of ≈ 0) from inliers (value ≈ 1). Using a
threshold of 0.5, 15.4% of all satellite observations have
been declared to be an outlier. We already observed the
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at least one observation has been rejected by the switchable constraints.
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Fig. 7. Estimated (red) and ground truth velocity (green). Although the
estimate fits the ground truth well in general, the peak velocity is systemat-
ically slightly underestimated. The reasons for this behaviour remain to be
explored in future work.

clear bimodal behaviour in our previous work using a batch
solver [4]. As we see from Fig. 5 the incremental approach
presented here was able to reproduce these beneficial results.

Fig. 6 compares the number of inlier and outlier satellite
observations for each vehicle position.

5) Velocity Estimate: The vehicle velocity is estimated
due to the constant velocity motion model factor that is
part of the factor graph layout. These velocity estimates are
compared to the ground truth in Fig. 7. As one can see, the
estimates follow the ground truth closely. However, the peak
velocity is constantly underestimated slightly. The reasons
for this behaviour are yet unknown and the issue has to be
clarified in future work.

6) Bayes Tree Pruning: The effects of the pruning strat-
egy can be seen in Fig. 8. The size of the tree was bounded
to less than 700 nodes throughout the experiment. The time
required for a single update fluctuates below 0.2 seconds,
except for a few spikes. Notice that the plotted update time
includes the time required for the auxiliary updates.

Close inspection and comparison with the velocity plot in
Fig. 7 reveals that the tree is smallest when the vehicle moves
fast. In this case the prune-by-distance strategy described
in section V-B removes vehicle variables that are estimated
to be further than 25 meters away from the current vehicle
position. Associated factors and variables are removed as
well. In other cases, i.e. when the vehicle moves slowly or
stops at traffic lights, the tree size is bounded to contain only
factors and variables from the 35 most recent measurement
cycles and therefore grows quickly.
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Fig. 8. The blue curve illustrates how the size of the Bayes tree fluctuates
due to the pruning scheme described in section V-B. The required update
time (including the auxiliary updates) is shown in red.
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section V-A for an explanation.

7) Auxiliary Update Steps: Fig. 9 illustrates the number
of auxiliary update steps performed over time. As explained
in section V-A, the number of necessary auxiliary updates
is determined adaptively by our algorithm in order to foster
the convergence of the current variable’s estimate. While the
number of necessary auxiliary steps if rather low for most of
the dataset, a few spikes in the plot mark especially difficult
situations were the solver had to iterate more often in order
to converge.

VII. CONCLUSIONS AND FUTURE WORK

We presented a novel approach for online robust GNSS-
based positioning in urban areas and demonstrated that
reliable positioning can be reached despite the presence of
massive non-line-of-sight and multipath effects.

We demonstrated how GNSS-based positioning can be
formulated as a factor graph problem and solved efficiently
online, i.e. in real-time, by applying an incremental inference
algorithm (iSAM2 [5]). We furthermore demonstrated that
by using switchable constraints, it is possible to detect and
remove outlier pseudorange observations that are caused
by multipath and non-line-of-sight effects. In addition, we
developed and applied two ideas for factor graph pruning and
auxiliary updates that foster fast online convergence and keep
the graph size and therefore the computation time bounded.

In this paper, we successfully advanced our earlier work
[4] from pure batch processing to online applicability. The
approach presented here, i.e. combining switchable con-
straints with iSAM2, auxiliary updates and graph pruning,
can therefore now be applied to real-world applications
that require online precise positioning information in urban

areas, such as advanced driver assistance systems, intelligent
transportation systems or location based services.

One of the advantages of the factor graph formulation is
its easy expandability. It is worthwhile to include additional
sensor information such as velocity and yaw rate measure-
ments from the vehicle’s internal sensors. Such additional
sensor information can simply be incorporated by adding
new variables and prior factors to the factor graph used here.

Another very promising direction of future work is to over-
come the limitations of Gaussian noise models by enabling
the factor graph framework to perform inference over non-
Gaussian distributions. Recent work [16] demonstrated first
steps into this direction and showed that e.g. the heavy-tailed
Cauchy distribution can be easily integrated in iSAM2. We
will explore these possibilities in future work. Although an
elaborate analysis has yet to be conducted, we expect that
GNSS-based positioning in urban areas can benefit from such
more realistic error models than the ubiquitous Gaussian.
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