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Switchable Constraints vs. Max-Mixture Models vs. RRR -
A Comparison of Three Approaches to Robust Pose Graph SLAM

Niko Siinderhauf and Peter Protzel

Abstract— SLAM algorithms that can infer a correct map de-
spite the presence of outliers have recently attracted increasing
attention. In the context of SLAM, outlier constraints are typ-
ically caused by a failed place recognition due to perceptional
aliasing. If not handled correctly, they can have catastrophic
effects on the inferred map. Since robust robotic mapping and
SLAM are among the key requirements for autonomous long-
term operation, inference methods that can cope with such data
association failures are a hot topic in current research. Our
paper compares three very recently published approaches to
robust pose graph SLAM, namely switchable constraints, max-
mixture models and the RRR algorithm. All three methods were
developed as extensions to existing factor graph-based SLAM
back-ends and aim at improving the overall system’s robustness
to false positive loop closure constraints. Due to the novelty of
the three proposed algorithms, no direct comparison has been
conducted so far.

I. INTRODUCTION

Probabilistic inference in factor graphs has become the
state of the art for solving large scale SLAM problems
in robotics. Current approaches like g?o [7] or iSAM2 [5]
eventually express the SLAM problem as a nonlinear least
squares optimization problem and solve it using iterative
techniques like Levenberg-Marquardt, Powell’s Dog-Leg or
Gauss-Newton. The key to efficiency is to exploit the sparse
structure of the underlying problem and the sparsity of the
resulting algebraic structures.

It is however well known that least squares methods are
vulnerable to outliers. In the context of pose graph SLAM,
outlier constraints typically are false positive loop closure
detections. That means, due to perceptional aliasing, i.e. self
similarity of the environment, the place recognition module
in the front-end fails and erroneously declares a loop closure
between two places that do not correspond in reality. This
typically results in heavily distorted and unusable maps.
Coping with these false positive loop closure constraints is
a non-trivial problem and standard techniques like the so
called robust cost functions (e.g. the Huber [4] function) are
not sufficient.

Instead, different specialized approaches have been pro-
posed in the very recent literature that aim at considerably
increasing the robustness of the overall SLAM system against
such outliers. These are in particular the switchable con-
straints introduced in our earlier work [13], the max-mixture
models by Olson and Agarwal [9], and the RRR algorithm
[8] by Latif, Cadena, and Neira.
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Given the novelty of these approaches, no direct compari-
son has been conducted so far. The contribution of our paper
therefore is to evaluate all three methods on a set of synthetic
and real-world datasets. We will compare their estimation
accuracy in terms of trajectory errors and precision and
recall. Before we explain the conducted experiments and the
results in detail, we begin by shortly introducing each of the
examined algorithms.

II. APPROACHES TO ROBUST POSE GRAPH SLAM
A. Switchable Constraints

To gain robustness against false positive loop closures,
we introduced the switchable constraints approach in our
earlier work [13], [12]. The main idea behind the switchable
constraints is that the topology of the factor graph that
represents the pose graph SLAM problem, should be partially
variable and subject to the optimization instead of being kept
fixed. This way, edges representing outlier constraints can
be removed from the graph during the optimization. This is
achieved by augmenting the original problem and introducing
an additional type of hidden variable: A switch variable is
associated with each factor that could potentially represent
an outlier. This additional variable acts as a multiplicative
scaling factor on the information matrix associated with that
constraint. Depending on the state of the switch variable (a
value between 0 and 1), the resulting information matrix is
either the original matrix (when the switch is equal to 1) or
0 (when the switch is 0) or something between both ends.
Notice that if the switch variable is equal to 0, the associated
constraint is completely removed and has no influence on the
overall solution.

Since in pose graph SLAM, every loop closure factor
could be an outlier, we associate each loop closure edge
with one of the newly introduced switch variables. With the
switchable constraints, the optimization therefore works on
an augmented problem, searching for the joint optimal con-
figuration of the original variables and the newly introduced
switch variables, hence searching the optimal graph topology.

For the experiments described later on, we used an imple-
mentation of the latest version of the switchable constraints
approach as described in [13]. This implementation is avail-
able in our software package Vertigo [1] and uses the SVN-
version of g2o [7] from www.openslam.org

B. Max-Mixture Model

The max-mixture model was introduced by Olson and
Agarwal [9]. The authors first considered to use Gaus-
sian mixtures to model the likelihood of the loop closure



Fig. 1.
datasets is overlaid in cyan.

constraints. In the conventional formulation of pose graph
SLAM using factor graphs, it is assumed that all distributions
are unimodal Gaussians. The reason why a false positive
loop closure constraint is an outlier, is because this assumed
Gaussian error model does not cover its true likelihood.
Olson and Agarwal argue that an additional second mixture
component, best modelled to be a uniform distribution over
the whole world, would cover for the low, but nonzero
probability that a loop closure constraint could be a false
positive and therefore connect to literally anywhere. This
uniform distribution can be approximated by a Gaussian
with a very large covariance and the same mean as the
first Gaussian component. The main insight of [9] is that
a Gaussian sum mixture cannot be converted into the least
squares formulation, because the sum cannot be pushed
through the log that is taken to transform the Gaussian
distribution into its negative log form. A max-mixture model
however, can be transformed as needed and is a suitable
approximation of the sum model. From the implementation
point of view, a maximum likelihood selection process is
applied each time a max-mixture factor is to be evaluated
by the solver. The selection process picks the component
that locally maximizes the likelihood of the factor’s error
function.

For our experiments we used the implementation
from the original authors that is available online
(github.com/agpratik/max-mixture.git,
revision as of October 25th 2012). Since the SVN-version
of g20 does not work with the max-mixture factors, we used
the GIT-version (Jan 11th, 2013) of gzo that is available
from github.com/RainerKuemmerle/g20.git.

C. RRR

The Realizing, Reversing, Recovering (RRR) algorithm
by Latif, Cadena, and Neira [8] aims at identifying false
positive loop closures by checking the consistency between
loop closures and the trajectory estimates with a number of
x? tests. This approach works by first clustering the loop
closure constraints based on their timestamps. Afterwards
the consistency of these single clusters is checked. This
so called intra cluster consistency check determines if the
whole cluster or single constraints of it shall be rejected as
outliers. It is performed by optimizing a graph that contains
all poses and all odometry constraints, but only the loop
closures from the cluster currently under inspection. If the

Five of the datasets used in this comparison. From left to right: Bicocca, Bovisa04, Bovisa06, City10000, Manhattan. Ground truth for the synthetic

TABLE I
THE DATASETS USED DURING THE EVALUATION.

Dataset synthetic / real ~ Source  Poses Loop
Closures
Manhattan synthetic iSAM 3500 2099
City10000 synthetic iSAM 10000 10688
Ring synthetic novel 434 26
RingCity synthetic novel 2361 901
Bicocca real RRR 8358 23 ...446
Bovisa-04 real RRR 11393 197
Bovisa-06 real RRR 10744 219

x? error after the optimization exceeds a threshold, the whole
cluster is rejected, i.e. all loop closure constraints in it are
declared to be false positives. Otherwise, all of the constraints
contained in the cluster are checked individually, again based
on the x? error. Single constraints whose residual error
exceeds a threshold are rejected. This scheme of x? tests is
applied again in a second phase that checks the inter cluster
consistency. In this part, the RRR algorithm tries to find
sets of clusters that are mutually consistent. Again this is
performed by repeatedly solving a graph that contains subsets
of the loop closure links. See [8] for further details.

For our experiments, we used the original imple-
mentation of the RRR algorithm that is available from
github.com/ylatif/rrr.git, (revision of August
22nd 2012).

III. THE EXPERIMENTS

In order to compare all three approaches, we conducted a
set of experiments on the synthetic and real-world datasets
illustrated in Fig. 1 and Fig. 6. Table I summarizes their
important properties. All experiments were conducted on an
Intel Core i7 CPU.

We benchmark the three approaches in terms of RMSE
and precision-recall, as well as the required runtimes. The
RMSE (root mean squared error) is the mean deviation of
the poses in the resulting map from their respective ground
truth positions. Notice that only the errors in the xy-plane are
considered. Although the RPE (relative pose error) would be
a better error metric [2], it is unavailable since we do not
have exact transformation information for the edges in the
real-world datasets.

Table II summarizes the parameters used for the different
algorithms. Since fine-tuning the parameters for different



TABLE I
PARAMETERS USED DURING THE EVALUATION.

Method  Parameter Value
SC = 1
MM mixture weight factor 0.01
MM mixture scale factor 10e-12
RRR odometry rate for Manhattan, Ring, RingCity 0
RRR odometry rate otherwise 5
RRR place recognition rate 1

datasets is not practical, it was not conducted in the fol-
lowing. We consider it desirable that the free parameters of
any algorithm can either be referred e.g. from the known
properties of an environment or dataset, or otherwise there
should be default values that can be used regardless of the
dataset at hand.

For the swichable constraints (SC) approach, the parameter
Z (which is the covariance of the switch variable prior
factor), was set to 1 as discussed in our earlier work e.g.
[13]. For the max-mixtures (MM) approach, there are two
parameters that need to be set. From the analysis presented
in [10] we selected the given values for the mixture and
covariance weights since they appeared to give the best
results in general. For RRR the parameters for odometry
and place recognition rate were set (after referring with the
authors of [8]) to either the correct values for the respective
dataset or (for the synthetic datasets) to those values that are
supposed to give the best results.

A. The synthetic Datasets Manhattan and City10000

Two of the synthetic 2D datasets we used in our evaluation
are common benchmark datasets in the community. The
Manhattan dataset has been first published by [11]. The
City10000 dataset shipped with the open source release of
iSAM [6].

These datasets originally do not contain any false positive
loop closure constraints. In order to test the robustness of
all evaluated algorithms, we therefore spoiled the datasets
with additional false positive loop closure edges. We fol-
lowed the same procedure as described in [13], i.e. we
added an increasing number of up to 1000 outliers (0, 50,
100, 250, 500, 1000) and applied four different policies
of adding these outliers. These policies comprise random
outliers, local outliers, consistent groups (with 10 constraints
per group), and consistent local groups. See [13] for a
more detailed explanation. The outliers were added using
the script generateDataset.py that ships with our
software Vertigo [1]. We applied the option —p that produces
perfectly matching loop closure constraints, i.e. the assumed
translation and rotation between the two connected poses was
0. Each pairing of policy vs. number of outliers was created
and solved 30 times, resulting in a total of 720 trials per
dataset for each algorithm.

B. The synthetic Datasets Ring and RingCity

We created these two new datasets in order to demonstrate
a principal weakness of the max-mixture approach. Both

datasets are illustrated in Fig. 6.

The trajectory of the Ring dataset is a simple octagonal
loop, measuring 150 m in diameter. The robot drives around
this octagon and closes the loop as it returns to its start-
ing position and re-visits the first 26 poses. However, the
accumulated odometry error around the loop is fairly large
(almost 27 meter). As we are going to see, although all 26
detected loop closures in the dataset are correct, the max-
mixtures approach is going to reject them all.

The RingCity dataset is built on the Ring dataset: After
closing the large outer loop, the robot continues its trajectory
inside the octagon, closing a number of further smaller loops
as it goes along.

Both datasets are available online as part of Vertigo [1].

C. The Real-World Datasets

All three real-world datasets are available as part of
the RRR release (github.com/ylatif/rrr.git) and
have been originally recorded during the Rawseeds project
[3].

The datasets Bovisa-04 and Bovisa-06 are mixed in-
door/outdoor while Bicocca has been recorded indoors. All
datasets provide odometry constraints and loop closure in-
formation that was created using a place recognition system
based on bag of words. By changing a parameter of this BoW
system, [8] created a total of 41 datasets for the Bicocca
scenario. The difference between them regards only the loop
closure constraints. Different settings of the BoW algorithm
were used to create between 23 and 446 loop closure edges.
The odometry constraints however remain unchanged. For
the two Bovisa scenarios, only one dataset is available,
respectively.

Although ground truth information is provided, the
datasets and their respective ground truth are not properly
aligned. Therefore, [8] suggests to align the estimated trajec-
tory and the ground truth by finding the optimal transforma-
tion that minimizes the misalignment. This is implemented
as part of the ATE (absolute trajectory error) error metric
provided by the Rawseeds toolkit. We adopt this method in
our evaluation to compute the error between the estimated
and the ground truth trajectories. Notice that we call the
resulting error RMSE (root mean squared error), but for the
real-world datasets this is essentially the ATE calculated by
the Rawseeds toolkit.

We did not add additional outliers to these real-world
datasets, but rather processed them as they were. From visual
inspection we can see that there are several false positives
present, but it is unknown, which constraints are outliers. We
therefore cannot conduct a presicion-recall analysis for the
Bicocca and Bovisa experiments.

IV. RESULTS

The results of our experiments with the different datasets
and algorithms are summarized in Table III that lists the
trajectory errors (RMSE) and required runtimes. In the last
column we indicate which algorithm performed best on the
respective dataset, where the “best” algorithm is the one



TABLE III
EVALUATION RESULTS.

Switchable Constraints Max-Mixtures Best
RMSE [m] Time [s] RMSE [m] Time [s] RMSE [m] Time [s]
Dataset median mean  max mean median mean  max mean median mean  max mean
Manhattan  1.16 1.36 2642 9.7 1.18 1.49 38.28 139 7.38 3740 9.8 SC
City 0.063 0.063  0.063 38.8 0.058 0.251 64.18 47.7 0.94 5.11 5233 SC
Ring - 4.39 - 0.07 - 15.06 - 0.12 - - 0.19 SC
RingCity - 1.82 - 0.41 - 41.13 - 2.0 - - 54.0 SC
Bovisa-04 - 2.39 - 1.1 - 11.81 - 14 - - 5.9 SC
Bovisa-06 - 9.38 - 1.1 - 7.67 - 14 - - 2.9
Bicocca 2.73 2.67 2.98 0.8 3.93 3.92 5.59 1.1 1.10 2.96 2.29
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Fig. 3. Distribution of the trajectory errors (RMSE) for all 41 Bicocca

Fig. 2. Estimated trajectories for the Bovisa-04 (left), Bovisa-06 (middle),
and one of the Bicocca (right) datasets. Colors indicate the used method:
switchable constraints (red), max-mixtures (blue), RRR (green). The tra-
jectories are plotted in their optimal alignment with the ground truth (not
shown) according to the get ATE () error function from the Rawseeds
toolkit.

with the lowest mean trajectory error. We are now going to
shortly discuss every dataset and comment on the algorithms’
individual outcomes.

A. The Bovisa Datasets

Fig. 2 compares the estimated trajectories of both Bovisa
datasets for all three algorithms. The numerical results are
summarized in Table III. From there we can see that the two
Bovisa datasets exhibited a different behaviour. For Bovisa-
04, the switchable constraint (SC) approach produced more
accurate results than RRR, while for Bovisa-06, RRR was
clearly superior. The max-mixture approach (MM) was not
able to produce accurate results as it disabled many of the
correct loop closures.

B. The Bicocca Datasets

The Bicocca scenario consisted of 41 single datasets
which differed in the number of loop closure constraints.
An exemplary estimation result of all three algorithms is
depicted in Fig. 2. The RMSE values over all datasets are
compared in the boxplots of Fig. 3 and summarized in Table
III. It is apparent that RRR has the lowest median and mean
RMSE values, although the spread of the results is rather
large. The switchable constraints perform worse than RRR
in most cases, but still better than MM.

The two free parameters of RRR were set equally for the
Bicooca and Bovisa datasets: The odometry rate was set to 5
and the place recognition rate to 1. According to the authors
of [8], these are the correct values for the recorded data.

datasets. RRR clearly produced the most accurate results.

C. The Manhattan Dataset

In contrast to the real-world datasets Bovisa and Bicocca,
the synthetic Manhattan dataset was spoiled by additional
false positive loop closure links as explained above. The
detailed results for the RMSE are shown in Fig. 4.

From these plots it is apparent that the max-mixtures and
the switchable constraints perform comparably well. Both
achieve low RMSE errors in general. However, a few outliers
of the RMSE distribution can be spotted in the boxplots for
SC and MM in Fig. 4. This behaviour was already reported
in [13] for the switchable constraints: A small percentage
of datasets could not be solved successfully, i.e. single false
positive loop closure constraints could not be removed. Here
we see the same behaviour for the max-mixture approach.
The total number of incorrectly handled datasets is slightly
larger for MM (there are more outliers in the error boxplots),
which can also be seen from the lower recall rate in Table
IV. Notice that a recall of 100% means that all outliers were
correctly rejected, while precision of 100% expresses that no
correct loop closures were erroneously disabled.

We reported before in [13] that combining the switchable
constraints with the Huber robust error function increases
its robustness further. We could confirm these findings here,
since mean RMSE dropped slightly from 1.36 to 1.21 for
SC, however even with Huber, some outlier loop closures
could not be rejected and the overall recall did not improve
significantly. The same effect could be observed for MM.
A combination of Huber however helped improving the
precision value for both approaches, at the cost of slower
convergence.

The RRR algorithm does not perform well on the Man-
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Fig. 4. Top: Boxplots showing the RMSE metric for all 720 trials of the
Manbhattan dataset for all three evaluated algorithms. Bottom: Comparison
of the median RMSE error metrics plotted against the increasing number of
false positive loop closure constraints. Notice the logarithmic scale in the
bottom plot and how the quality of RRR’s results quickly degrades with
increasing number of outliers.

TABLE IV
COMPARISON OF MEAN PRECISION / RECALL [%]

Dataset SC MM RRR
Manhattan ~ 99.69 / 99.54  98.98 / 98.71
City10000 100 / 99.99 99.19 / 99.94

hattan dataset. We can see in Fig. 4 that the errors are much
higher, roughly by one order of magnitude. After referring
with the authors of [8], we used an odometry rate of 0 and
place recognition rate 1, which was supposed to give the best
results. With these settings, RRR considers each loop closure
to be its own individual cluster.

D. The Cityl000 dataset

The outcomes for the City dataset are similar to those of
the Manhattan dataset. Again we observe max-mixtures and
switchable constraints to perform comparably, while RRR is
not able to handle this particular dataset well. The median
RMSE is compared in Fig. 5. Although the median RMSE
is smallest for the max-mixture approach, its lower recall
rate produced bad trajectory results for some of the 720
trials. Therefore, the smallest mean RMSE over all trials is
achieved by the switchable constraints methods, which was
able to successfully resolve all trials and reached a almost
perfect 99.99% recall rate. Notice that it was not possible to
use the supposedly best parameters for RRR (which would be
place recognition rate 1, odometry rate 0), since with these
settings, even after a whole week of constant processing,
RRR still was not finished with the experiment. To bring
the required runtime into a bearable region, we set the place
recognition rate to 1 and odometry rate to 5 and only ran
each pairing of outliers and policy once, which resulted in
24 trials for RRR.
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Fig. 5. Comparison of the RMSE metric for all trials of the City dataset.
MM and SC have similar low median errors, but MM produces more
outliers, i.e. unresolved trajectories where false positives are still present.
RRR’s results are an order of magnitude worse.

E. The Ring and RingCity Datasets

These two datasets reveal a weakness in the max-mixture
approach: It is prone of erroneously disabling correct loop
closure constraints if the initial errors for these constraints
are high. Fig. 6 illustrates this behaviour. Even for the very
simple Ring dataset, MM was not able to close the loop and
rejected all 26 loop closure edges. SC and RRR handled the
dataset well, although SC gained lower RMSE values.

The same results can in principle be found for the more
complex RingCity scenario, where MM again rejected all
901 loop closures as outliers. RRR erroneously rejected 154
of them, which lead to worse RMSE results than SC. Notice
that since there are no outliers in these datasets, precision-
recall statistics cannot be calculated.

F. A Discussion of Precision and Recall Statistics

There is a major conceptual difference between the switch-
able constraints approach and MM and RRR: While the latter
two make a binary decision on whether a loop closure should
be accepted or rejected, SC assigns a continuous switch value
between 0 and 1. This means that in terms of precision-recall
statistics, MM and RRR produce a single point for each trial.
SC however produces a curve that depends on the chosen
threshold for the switch values to force a binary decision.

This inherently different behaviour complicates the anal-
ysis of the algorithms in terms of precision and recall. The
values given in Table IV are the mean precision and recall
over all 720 trials of one dataset for MM and RRR. For SC,
we first determined the point with the maximum f-score on
the precision recall curve for each trial and than averaged
over these 720 points.

V. DISCUSSION AND CONCLUSIONS

To conclude this paper, we would have preferred to report
that one of the three evaluated algorithms performed clearly
superior on all of the examined datasets. However, this is not
the case.
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Fig. 6. Two simple new datasets, coined Ring (a) and RingCity (b),
illustrate the limits of the Max-Mixture approach [9]. The left sides of
(a) and (b) show the respective ground truth trajectories (cyan) for both
datasets and the initial guesses from odometry (black) along with the loop
closures (gray). Notice that all loop closures are correct, i.e. there are no
false positives. On the right are the resulting maps produced by SC (red),
MM (blue) and RRR (green). Even for the very simple Ring dataset, MM
fails to close the loop. Due to the large accumulated odometry error along
the loop, MM always selects the outlier component of the mixture model,
despite all 26 loop closure constraints supporting each other. Only if the
mixture scale factor is set to > 10~7 (the default value is 10~'2), can
MM close the loop. However, with this value it cannot cope with outliers in
the Manhattan dataset anymore. RRR can process the simple Ring dataset as
well as SC, but discards correct loop closures for the slightly more complex
RingCity dataset. Only the switchable constraints approach (red) can cope
well with both datasets.

RRR performed best on the real-world datasets Bovisa-
06 and Bicocca, while SC and MM followed far behind.
On the other hand, on the synthetic datasets Manhattan and
City10000, SC and MM easily outperformed RRR, which
was on the edge of being infeasible, especially for the large
City10000 dataset Both the required runtime and RRR’s
ability to cope with false positive loop closure constraints
were clearly inferior for these two synthetic datasets.

Compared to SC, MM has the advantage of being simpler
to implement. Since there are no additional variables and
factors that have to be evaluated, we can expect MM to con-
verge quicker than SC does. This advantage is not captured
or revealed by our experiments reported here, since both
SC and MM always run for 50 iteration of Gauss-Newton,
regardless of the residual error or convergence behaviour.
This limitation is because the Gauss-Newton solver of gZo
currently does not detect convergence. However, our experi-
ments with the new Ring and RingCity datasets revealed that
the maximum likelihood selection scheme underlying MM
is prone of picking the wrong mixture component when the
error of the initial guess (i.e. according to odometry) is very
high. We think this also explains MM’s worse performance
on the real-world datasets, where it declares most of the true

positives to be outliers.

An advantage of SC over the other two algorithms is that
there is only one free parameter = and that the results of the
algorithm are rather insensitive to the exact value chosen. We
kept this parameter fixed to 1 for all experiments we reported
in this paper and our earlier work. RRR and MM have at least
two free parameters that seem to be more delicate to tune.
As a side remark, it is of course always possible to reach
better results than reported here if one would fine-tune the
parameters of the individual algorithms for each dataset. E.g.
setting = = 0.1 results in a RMSE of 3.09 for Bovisa-06,
thus SC suddenly outperforms RRR. However, we think that
the most appealing algorithm is the one with the least number
of free parameters or the one which is most insensitive to
the exact value of the parameters

Since none of the algorithms worked perfectly for all
datasets, we have to conclude that more research on robust
inference in factor graphs is necessary. A deeper understand-
ing of the parameters of SC and MM, how they influence
the estimation result, and if their optimal values could be
referred directly from the characteristics of a dataset (i.e.
not by an exhaustive search) is a worthwhile direction of
future research.
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