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Abstract— Changing environments pose a serious problem to
current robotic systems aiming at long term operation under
varying seasons or local weather conditions. This paper build
on our previous work where we propose to learn to predict
the changes in an environment. Our key insight is that the
occurring scene changes are in part systematic, repeatable
and therefore predictable. The goal of our work is to support
existing approaches to place recognition by learning how the
visual appearance of an environment changes over time and by
using this learned knowledge to predict its appearance under
different environmental conditions. We describe the general
idea of appearance change prediction (ACP) and investigate
properties of our novel implementation based on vocabularies
of superpixels (SP-ACP). Our previous work showed that the
proposed approach significantly improves the performance of
SeqSLAM and BRIEF-Gist for place recognition on a subset of
the Nordland dataset under extremely different environmental
conditions in summer and winter. This paper deepens the
understanding of the proposed SP-ACP system and evaluates
the influence of its parameters. We present the results of a large-
scale experiment on the complete 10 hour Nordland dataset and
appearance change predictions between different combinations
of seasons.

I. INTRODUCTION

Long term navigation in changing environments is one

of the major challenges in robotics today. Robots operating

autonomously over the course of days, weeks, and months

have to cope with significant changes in the appearance of

an environment. A single place can look extremely different

depending on the current season, weather conditions or the

time of day. Since state of the art algorithms for autonomous

navigation are often based on vision and rely on the system’s

capability to recognize known places, such changes in the

appearance pose a severe challenge for any robotic system

aiming at autonomous long term operation.

The problem has recently been addressed by few au-

thors, but so far no congruent solution has been proposed.

Milford and Wyeth [17] proposed to increase the place

recognition robustness by matching sequences of images

instead of single images and achieved impressive results

on two across-seasons datasets. Exploring into a different

direction, Churchill and Newman [5] proposed to accept

that a single place can have a variety of appearances. Their

conclusion was that instead of attempting to match differ-

ent appearances across seasons or severe weather changes,

different experiences should be remembered for each place,

where each experience covers exactly one appearance. Both
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Fig. 1. State of the art approaches to place recognition will attempt to
directly match two scenes even if they have been observed under extremely
different environmental conditions. This is prone to error and leads to bad
recognition results. Instead, we propose to predict how the query scene (the
winter image) would appear under the same environmental conditions as the
database images (summer). This prediction process uses a dictionary that
exploits the systematic nature of the seasonal changes and is learned from
training data.

suggested approaches can be understood as the extreme ends

of a spectrum of approaches that spans between interpreting

changes as individual experiences of a single place on one

hand and increasing the robustness of the matching against

appearance changes on the other hand. Our work presented

in the following is orthogonal to this spectrum.

What current approaches to place recognition (and envi-

ronmental perception in general) lack, is the ability to reason

about the occurring changes in the environment. Most ap-

proaches try to merely cope with them by developing change-

invariant descriptors or matching methods. Potentially more

promising is to develop a system that can learn to predict

certain systematic changes (e.g. day-night cycles, weather

and seasonal effects, re-occurring patterns in environments

where robots interact with humans) and to infer further

information from these changes. Doing so without being

forced to explicitly know about the semantics of objects in

the environment is in the focus of our research and the topic

of this paper.

Fig. 1 illustrates the core idea of our work and how it

compares to the current state of the art place recognition

algorithms. Suppose a robot re-visits a place under extremely



different environmental conditions. For example, an environ-

ment was first experienced in summer and is later re-visited

in winter time. Most certainly, the visual appearance has

undergone extreme changes. Despite that, state of the art

approaches would attempt to match the currently seen winter

image against the stored summer images.

Instead, we propose to predict how the current scene

would appear under the same environmental conditions as

the stored past representations, before attempting to match

against the database. That is, when we attempt to match

against a database of summer images but are in winter time

now, we predict how the currently observed winter scene

would appear in summer time or vice versa.

The result of this prediction process is a synthesized

summer image that preserves the structure of the original

scene and is close in appearance to the corresponding

original summer scene. This prediction can be understood

as translating the image from a winter vocabulary into a

summer vocabulary or from winter language into summer

language. As is the case with translations of speech or

written text, some details will be lost in the process, but

the overall idea, i.e. the gist of the scene will be preserved.

Sticking to the analogy, the error rate of a translator will drop

with experience. The same can be expected of our proposed

system: It is dependent on training data, and the more and the

better training data is gets, the better can it learn to predict

how a scene changes over time or even across seasons.

This paper build upon our previous work [18] where

we introduced the novel idea of predicting extreme scene

changes across seasons to aid place recognition for the first

time. We prove the feasibility of our idea and describe

an implementation based on superpixel vocabularies. We

demonstrate how we can predict the appearance of natural

scenes across winter and summer time, as illustrated in Fig.

1. By applying this approach, we are able to significantly

improve the place recognition performance of SeqSLAM

[17] and BRIEF-Gist [21] on the new, publicly available

large-scale Nordland dataset [20] that traverses an envi-

ronment in winter and summer under extremely different

environmental conditions. While the first results we reported

in [18] were based on a small subset of the Nordland

dataset, this paper presents new results on the complete

Nordland track. We furthermore evaluate predictions between

different combinations of seasons. An extensive evaluation

of important parameters deepens our understanding of the

proposed prediction system and its parameters.

In the following section, we put the proposed prediction

system in the context of related work, before we describe

its algorithmic steps in section III. Section IV introduces the

Nordland dataset we used for training, validation and testing.

The results section V presents comprehensive place recog-

nition experiments on this dataset using FAB-MAP, BRIEF-

Gist and SeqSLAM in combination with the proposed SP-

ACP system. The paper is concluded by a discussion of

limitations of the current system and directions for future

work in section VI. Additional information and videos can

be obtained from our project website1.

II. RELATED WORK

The related work is threefold. First we give a short review

of the work on visual place recognition in changing environ-

ments, followed by methods on how to deal with changing

environments on the mapping side, finally we present the

relation of our approach to the texture transfer and image

analogy ideas published in computer graphics.

A. Approaches for place recognition in changing environ-

ments

Traditionally, visual place recognition is either based on

matching local features (like SIFT or SURF keypoints), bags

of visual words (like FAB-MAP [6]), global image descrip-

tors (like GIST [24]), or a combination. While there is a large

body of research on visual place recognition in static scenes

or scenes with few moving objects, only recently attempts

were made to extend the recognition capabilities to changing

environments, e.g. to achieve across-season matchings. So far

four directions exist how such changing environments can be

dealt with:

1) Using standard approaches and hope for the best

2) Increase robustness by matching image sequences

3) Switching to wavelengths other than visible light

4) Searching for seasonally invariant features

In the following we give a short overview of attempts in each

direction.

1) Using standard approaches and hope for the best:

Based on local keypoint features, Valgren and Lilienthal [25]

show high recognition rates on single image matching of

five places across seasons. Their approach uses U-SURF

keypoints and descriptors on omnidirecional images. They

conclude that high-resolution omnidirectional images and

additional constraints on the matched keypoints (epipolar

geometry and reciprocal matchings) are necessary. Unfor-

tunately, it remains unclear what portion of matchings are

on seasonally invariant objects (like building facades) and

how this approach generalizes to larger datasets. Keypoint

based approaches in changing environments have to rely

on the detection of keypoints on objects that vary strongly

in their appearance. To overcome this shortcoming, a fixed

distribution of keypoints can be used (e.g. a keypoint grid).

Sift Flow[14] computes a SIFT descriptor at each pixel and

matching is based on local and global constraints. While they

show impressive results on scene alignment under strongly

varying conditions, this approach has not yet been used for

across season place recognition. Glover et al. [8] present a

combination of the advanced local feature recognition system

FAB-MAP [6] and the biologically inspired SLAM approach

RatSLAM [16] based on pose cell filtering and experience

mapping. RatSLAM is robust to false-positive loop closures

from the image processing front-end and integrates matching

information over time. The hybrid FAB-MAP + RatSLAM

1http://www.tu-chemnitz.de/etit/proaut/forschung/
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system has shown that mapping in challenging outdoor

conditions with variances due to illumination and structure

is possible. However, the authors conclude that the SURF

features on which it is based, are too variable under those

varying conditions to form a truly reusable map.

2) Increase robustness by matching image sequences:

The pose cell filtering of RatSLAM is a step towards

using sequences for matching. In their subsequent work,

the RatSLAM authors presented SeqSLAM [17] that builds

upon a lightweight visual matching front-end and explicitly

matches local sequences of images. They show impressive

results on matching challenging scenes across seasons, time

of day and weather conditions. Although their system is

limited to constant velocity motion, it represents the state

of the art for matching under changing conditions. Badino

et al. [2] implement the idea of visual sequence matching

using a single SURF descriptor per image (WI-SURF) and

Bayesian filtering on a topometric map. They show real-

time localization on several 8 km tracks recorded at different

seasons, times of day and illumination conditions.

3) Switching to wavelengths other than visible light:

Maddern and Vidas [15] combine visible and long-wave

infrared imaging for place recognition through a day-night-

cycle. Their system is based on FAB-MAP and combines

words of SURF features from the visible and infrared images

(using two separate vocabularies). They find the combination

of both modalities to give the best results: infrared is more ro-

bust to extreme changes while the visible modality provides

better recall during day. They present preliminary results on

data of a 1.5 km track traversed several times during a single

day-night cycle.

4) Searching for seasonally invariant features: He et al.

[10] learn an intermediate representation of images such that

the distance of two images in this intermediate representation

reflects the distance between the places in the world, where

these images were taken. The intermediate representation is a

vector of weighted SIFT feature prototypes. Since they train

their system on summer and winter images, they search for

a set of SIFT features that are suitable for place recognition

under this seasonal change. Their approach still relies on

the extraction of local keypoints on the same world object

under the seasonal change. Zhang and Kosecka [26] focus

on recognizing buildings in images. They use a hierarchical

matching scheme based on localized color histograms and

SIFT features to search for buildings in an image database.

While they did not explicitly design their system for place

recognition across seasons, their test data (ZuBud) covers

different weather conditions and seasons, thus building fa-

cades could serve as seasonally invariant landmarks.

B. Organizing the Changes in a Map

Changing environments are challenging for visual place

recognition systems. But they are also a challenge for the

mapping side of the problem. Churchill and Newman [5]

present a mapping system based on a plastic map, a com-

posite representation of multiple experiences connected in

a relative framework. Each experience handles a sequence

of images, motion and 3D feature data. Multiple localizers

match the current frame to stored experiences. Several expe-

riences can be active at once, when they represent the same

place. The complexity of the plastic map varies according to

the amount of variation in the scene. They present results in

changing lighting and weather conditions over a three month

period. For pose graph SLAM, Biber and Duckett [4] showed

that the map grows unbounded in time, even for small envi-

ronments that are repeatedly traversed. Johannsson et al. [12]

proposed the reduced pose graph that reuses already existing

poses in previously mapped areas and incorporates new

measurements as new constraints between existing poses.

This can be used if the place recognition frontend can match

the poses. Konolige and Bowman [13] present a mapping

system based on a skeleton graph of keyframes from a

visual odometry system. Views of keyframes are updated

and deleted to preserve view diversity while limiting their

number. They showed their system to handle changing light

conditions in an office environment.

In summary, being able to associate places despite severe

changes in their appearance is advantageous to the mapping

process since the rate at which new experiences [5], poses

[12], or views [13] have to be introduced to the map can be

reduced.

C. Correspondence to the Texture Transfer and Image Anal-

ogy Problems

The idea to predict images from training examples has

some relations to two other image processing tasks:

The texture transfer problem [7]: Given two images AS ,

AW and a correspondence map C that relates parts of AS

to parts of AW , synthesize the first image with the texture

of the second. C typically depends on image intensity, color,

local image orientation or other derived quantities.

The image analogy problem [11]: Given an image pair

(AS , AW ) and a query image BS , compute a new “analo-

gous” image BW that relates to BS in the same way as AW

to AS .

Speaking in the context of predicting image change across

seasons: AS , AW are given summer (S) and winter (W)

training images and we learn to synthesize a new winter

image BW given a new summer image BS or vice versa.

The approaches of Efros and Freeman [7] and Hertzmann

et al. [11] create visually appealing results but have not

yet been used in context of place recognition. They focus

on using single image pairs instead of large collections of

training data. Nevertheless, such approaches could be used

to improve the visual coherence of the images predicted by

the proposed prediction framework.

III. SP-ACP: LEARNING TO PREDICT SCENE CHANGES

ACROSS SEASONS

In this section of our paper we explore how the chang-

ing appearance of a scene across different environmental

conditions can be predicted. Throughout the remainder of

this section these changing environmental conditions will be

summer and winter. However, the concepts described in the



following can of course be applied to other sets of contrasting

conditions such as day/night or weather conditions like

sunny/rainy etc.

How can the severe changes in appearance a landscape

undergoes between winter and summer be learned and pre-

dicted? The underlying idea of our approach is that the

appearance change of the whole image is the result of the

appearance change of its parts. If we had an idea of the

behavior of each part, we could predict the whole image.

Instead of trying to recover semantic information about the

image parts and model their behavior explicitly, we make

the assumption that similarly appearing parts change their

appearance in a similar way. While this is for sure not always

true, it seems to hold for many practical situations (e.g.

changing color of the sky from sunny day light to dawn,

appearance of a meadow in summer to its snow-covered

winter counterpart). This idea can be extended to groups of

parts, incorporating their mutual relationships.

We use superpixels (see section III-D.1 for details) as

image parts and cluster them to vocabularies using a de-

scriptor (III-D.2). To predict how the appearance of a scene

changes between summer and winter, we first conduct a

learning phase on training data (III-A) which comprises

scenes observed under both summer and winter conditions.

In the subsequent prediction phase (III-C), the appearance of

a new image seen under one of the conditions is predicted

as it would be observed under the other viewing condition.

A. Learning a Vocabulary for Summer and Winter

During the training phase we have to learn a vocabulary

for each viewing condition and a dictionary to translate

between them. In a scenario with two viewing conditions

(e.g. summer and winter), the input to the training are images

of the same scenes under both viewing conditions and known

associations between pixels corresponding to the same world

point. Obviously the best case would be perfectly aligned

pairs of images. This requirement for almost pixel-accurately

aligned training images is clearly the major limitation of our

current system. The Nordland dataset discussed in Section

IV fulfills these needs.

Fig. 2 illustrates the training phase. Each image is seg-

mented into superpixels and a descriptor for each superpixel

is computed. The set of descriptors for each viewing condi-

tion is clustered to a vocabulary using hierarchical k-means.

Each cluster center becomes a word in this visual vocabulary.

The descriptors and the average appearance of each word

(the word patch) are stored for later synthesizing of new

images. For our experiments, we learned 10,000 words for

each vocabulary.

B. Learning a Dictionary to Translate between Vocabularies

The learned visual vocabularies for both summer and

winter conditions are able to express a typical scene from

their respective season. The next step is learning a dictionary

that allows translating between both vocabularies. This is

illustrated in the lower part of Fig. 2.

Condition 1
(e.g. Winter)

Condition 2
(e.g. Summer)

Superpixel

DescriptorsDescriptors

Superpixel

Vocabulary for Condition 2
(e.g. Summer)

Learned Dictionary
(e.g. Winter - Summer)

Vocabulary for Condition 1
(e.g. Winter)

Known 
Correspondences

...

Fig. 2. SP-ACP learning a dictionary between images under different
environmental conditions (e.g. winter and summer). The images are first
segmented into superpixels and a descriptor is calculated for each superpixel.
These descriptors are then clustered to obtain a vocabulary of visual words
for each condition. In a final step, a dictionary that translates between both
vocabularies is learned. This can be done due to the known pixel-accurate
correspondences between the input images.

Since the images from the training dataset are aligned,

we can determine how single words behave when the envi-

ronmental conditions change. By overlaying the two aligned

images from both summer and winter conditions, every pixel

is associated with two words, one from the winter and

another from the summer vocabulary. For each combination

of words from the summer and winter vocabulary we can

then count how often they have been associated to the same

pixel coordinates.

This process is repeated for every pair of corresponding

images in the training dataset, step-by-step building a distri-

bution over the occurring translations between words from

one vocabulary into the other. The final dictionary can be

compiled by either storing the full distribution or ignoring

it and using a winner-takes-all scheme that stores only the

transition that occurs most often. The experimental results

of section V will compare both approaches.

C. Predicting Image Appearances Across Seasons

Fig. 3 illustrates how we can use the learned vocabularies

and the dictionary to predict the appearance of a query image

across different environmental conditions.

The query image is segmented into superpixels and a

descriptor for each superpixel is computed. Using this de-

scriptor, a word from the vocabulary corresponding to the

current environmental conditions (e.g. winter) is assigned to

each superpixel. The learned dictionary between the query

conditions and the target conditions (e.g. winter-summer)

is used to translate these words into words of the target

vocabulary.



Query Image
(e.g. Winter)

DescriptorsSuperpixel

Winter Vocabulary

Translate with Dictionary
(e.g. Winter - Summer)

Predicted Image
(e.g. Summer)

Word Representation
of Query Image

...

Fig. 3. SP-ACP predicting the appearance of a query image under different
environmental conditions: How would the current winter scene appear
in summer? The query image is first segmented into superpixels and a
descriptor is calculated for each of these segments. With this descriptor each
superpixel can be classified as one of the visual words from the vocabulary.
This word image representation can then be translated into the vocabulary
of the target scene (e.g. summer) through the dictionary learned during the
training phase (see Fig. 9). The result of the process is a synthesized image
that predicts the appearance of the winter query image in summer time.

Since the vocabularies also contain word patches, i.e. an

expected appearance of each word, we can synthesize the

predicted image based on the word associations from the

dictionary and the spatial support given by the superpixel

segmentation. Notice that when the dictionary provides the

full distribution over possible translations for a word (as

opposed to the winner-takes-all scheme), the resulting syn-

thesized image patches are built by the weighted mean over

all patches from the target words in the distribution. No

further processing (e.g. as proposed by [7], [11]) is done to

improve the appearance or smoothness of the resulting word

images. Example word images and predictions are shown in

Fig. 9.

D. Superpixel Segments and their Descriptors

As we have seen, superpixel segments play an important

role in our proposed approach. They constitute the parts

of the images and carry the information that is exploited

for learning and predicting. We therefore want to briefly

provide information on the used segmentation algorithm and

descriptors.

1) Superpixels: Superpixels are the result of perceptual

grouping of pixels or seen the other way around, the result of

an image oversegmentation. In contrast to an object-ground

segmentation, typically a superpixel segmentation divides

the image into 25 - 2500 segments. Superpixels carry more

information than pixels and align better with object edges

than rectangular image patches. The term was coined in [19]

and various algorithms for computation of superpixels exist.

In this work, we use a version of SLIC [1] to segment the

image in 1,000 superpixels. SLIC performs a localized k-

means to cluster pixels based on Lab-color values and pixel

position in the image. The results are compact and regularly

distributed superpixels following object boundaries. Example

segmentations are shown in Fig. 4.

2) Superpixel Descriptor: Various descriptors for super-

pixels exist in the literature. Typically the descriptor includes

Fig. 4. Example superpixel segmentations. Two input images are segmented
into 200 (top left triangles) and 1,000 (bottom right triangles) superpixels.
Superpixel borders are shown red.

various types of features combined with dimensionality re-

duction techniques. E.g. Tighe et al. [23] combine shape,

location, texture (using SIFT) and color features. Barnard et

al. [3] use 40 features, the descriptor of Gould et al. [9] even

includes multiple color descriptors.

In the presented work we combine a color histogram in

Lab color space (each channel with 10 bins) with an upright

SURF descriptor (128 Byte) to capture texture. The SURF

descriptor is computed over the entire superpixel, using the

superpixel midpoint as keypoint. We additionally include the

y-coordinate of the superpixel center. The influence of this

additional information is evaluated in Fig. 10. We do not

apply further dimensionality reduction.

IV. THE NORDLAND DATASET

To test our proposed approach of appearance change

prediction, we required a dataset where a camera traverses

the same places under very different environmental condi-

tions but under a similar viewing perspective. Ideally, the

dataset should contain ground truth information, e.g. the

corresponding scenes should be known.

The TV documentary “Nordlandsbanen – Minutt for Min-

utt” by the Norwegian Broadcasting Corporation NRK pro-

vides video footage of the 728 km long train ride between the

cities of Trondheim and Bodø in north Norway. The complete

10 hour journey has been recorded from the perspective of

the train driver four times, once in every season. Thus the

dataset can be considered comprising a single 728 km long

loop that is traversed four times. As illustrated in Fig. 5, there

is an immense variation in the appearance of the landscape,

featuring a complete snow cover in winter, fresh and green

vegetation in spring and summer, as well as colored foliage

in autumn.

In addition to the seasonal changes, different local weather

conditions like sunshine, overcast skies, rain and snowfall are

experienced on the long trip. Fig. 6 shows the altitude profile

of the complete track and illustrates the high variance in

appearance in a single season due to the different vegetation

zones the train passes. Most of the journey leads through

such natural scenery, but the train also passes through urban

areas along the way and occasionally stops at train stations

or signals.

The videos of the journey have been recorded at 25 fps

with a resolution of 1920×1080 using a SonyXDcam with a

Canon image stabilizing lens of type HJ15ex8.5B KRSE-V.

GPS readings were recorded in conjunction with the video

at 1 Hz. Both the videos and the GPS track are publicly
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TABLE I

OVERVIEW OF CONDUCTED EXPERIMENTS

Place Recog. Algorithm Validation Dataset Test Dataset

FAB-MAP Section V-B -
BRIEF-Gist Section V-C -
SeqSLAM Sections V-D.2 and V-D.3 Section V-D.4

h videos at 0.1 frames per second using the following avconv
command:

avconv -r 0.1 -vsync vfr -s 854x480

-i nordlandsbanen.winter.sync.1920x1080.h264.nrk.mp4

image-%05d.png

Fig. 7 illustrates the complete journey from Trondheim to

Bodø and the position of the training and validation datasets.

V. EXPERIMENTS AND RESULTS

After the previous sections explained our proposed SP-

ACP system and introduced the Nordland dataset, we can

now describe the conducted experiments and their results.

We evaluate the proposed SP-ACP prediction system

by using it as a preprocessing step to the existing place

recognition algorithms FAB-MAP [6], BRIEF-GIST [21],

and SeqSLAM [17]. For each of these three established

approaches, we will compare the respective performance of

1) directly matching between images of different seasons,

e.g. winter vs. spring

2) using the proposed SP-ACP to predict the changed

appearance of one of the seasons and e.g. match a

predicted winter image against the real winter images

We will calculate precision and recall and use apply

the resulting F-score as the primary performance measure.

Since modern SLAM systems do not have to rely on their

place recognition front ends to operate at 100% precision

anymore [22], the recall at 100% precision is used as a

secondary performance indicator only. Experiments with all

three mentioned algorithms will first be conducted on the

validation dataset. We will use SeqSLAM to perform an

analysis of the parameters of SP-ACP and determine the

optimal values for these parameters. Finally, SP-ACP using

these optimal settings is applied to the test dataset that

covers the complete Nordland journey to demonstrate how

place recognition in changing environments can benefit from

our proposed appearance change prediction. Table I gives

an overview of the experiments. Table II shows the default

parameters. Deviations from these setting are indicated for

each experiment.

A. Applying SP-ACP: Predicting Images of the Nordland

Dataset

Using the training dataset (section IV-A) and the training

procedure introduced in section III-A, we can learn vocab-

ularies for spring and winter conditions and a translation

(dictionary) between them. Fig. 8 shows example pairs of

words from both vocabularies. For each spring word, we

TABLE II

OVERVIEW OF THE DEFAULT PARAMETERS

Parameter Value

Number of Superpixels 1,000
Number of Words 10,000
Incorp. translations all
Superpixel Descriptor normalized Lab histogram

(10 bins per channel),
128 Byte upright SURF descriptor,
superpixel center y coordinate

Fig. 8. Example words and their translations. Each tiny image pair shows
a word from the spring vocabulary and the word from the winter vocabulary
with the highest impact on the translation.

show the winter word with the highest impact on the transla-

tion (which is the one that would be applied in a WTA setup).

Following the proposed prediction procedure of section III-

C, we can use the learned vocabularies and dictionary to

create a predicted winter image for a given spring image or

vice versa. Example predictions are visualized in Fig. 9 and

Fig. 14. To evaluate the benefit of the proposed prediction

step for place recognition, we can now use such predicted

images as input for existing place recognition algorithms.

B. Experiments with FAB-MAP

In a first experiment we evaluated the performance of

FAB-MAP [6] (using the openFAB-MAP implementation)

on the Nordland dataset. We let FAB-MAP learn its visual

vocabulary on either the spring training dataset, the winter

training dataset or a combination of both.

As expected, directly matching winter against spring im-

ages was not successful: The maximum measured recall was

0.025 at 0.08 precision. This is presumably because FAB-

MAP fails to detect common features in the images from

both seasons.

The images produced by our proposed scene change

prediction approach are not suitable for FAB-MAP since the

patch structure of the synthesized images interferes with the

necessary keypoint detection. In the following, we therefore

examine two holistic approaches.

C. Extending and Improving BRIEF-Gist

BRIEF-Gist [21] is a so called holistic descriptor, i.e. a de-

scriptor that describes the appearance of the complete image

and not of single regions in it. The idea of a holistic scene

descriptor was e.g. examined by Torralba et al. [24] with the

introduction of the Gist descriptor. We chose the faster and

more simple BRIEF-Gist descriptor on the opponency color

space, using 32 bytes per channel.



Image A Word Image A 

Predicted B
from A  (WTA)

Predicetd B
from A (Full) Word Image B Image B

Conventional Matching
Proposed Matching

Images generated from image A

Fig. 9. Example images of the Nordland dataset, their word representations and predictions. The first column shows input query images A given to the
prediction framework. The second column is a representation of the query image with words of the first vocabulary. All superpixel segments are replaced
by word patches (word image). Applying a winner-takes-all dictionary (WTA) or a dictionary that uses the full distribution translates the words to the
second vocabulary. Column three and four show the resulting predicted images B. For comparison column six shows the corresponding real image B
and column five its word image representation. We propose not to match the visually very different images A and B directly, rather we propose to use a
predicted image B for matching.

1) Experiments: In the following, the performance of

BRIEF-Gist to recognize places of the Nordland dataset be-

tween spring and winter images is evaluated. We contrast the

performance with and without the proposed prediction step

and compare different setups of the prediction framework

using the validation dataset. For each setup we compute

a similarity matrix by comparing each combination of a

spring and (potentially predicted) winter image. Since we

know that spring and winter image sequences are syn-

chronized, the ground truth similarity matrix is a diagonal

matrix. For a quantitative evaluation we apply thresholds

and compute precision-recall curves. Due to inaccuracies

during synchronization and local self similarity we allow

matchings of images with up to five frames distance in the

sequence. To evaluate a setup of the prediction framework,

we predict a winter image for each spring image based on

the learned superpixel vocabularies and dictionary and use

this for matching against the real winter images.

2) Results: The results of the evaluation with BRIEF-

Gist are illustrated in Fig. 10. The red curve in Fig. 10 a)

shows that due to the extreme appearance variations, direct

matching of spring to winter images fails. However, the

green curve shows the performance improvement when the

proposed additional SP-ACP step is applied and matching

is done between the winter and a predicted winter image.

Although the recall at 100% precision does not benefit from

the prediction, the maximum F-score improves from 0.14 to

0.31.

Fig. 10 b) compares the two proposed methods to build

the dictionary, namely winner-takes-all (WTA) and storing

the full probability distribution. The green curve in b) is the

same as in a). From the red curve we can conclude that

the WTA scheme has disadvantages in the important high

precision area and storing the full distribution is beneficial.

Matching the predicted winter images against the word

representation of the original winter images leads to a very

similar loss of performance as can be seen in Fig. 10 c). To

illustrate what is lost due to the transition from real images to

word images, the blue curve in c) represents the performance

of BRIEF-Gist when matching the spring images to their own

(spring) word representation.

In a final experiment shown in d), we removed the y-

coordinate from the superpixel descriptor. The red curve

illustrates the slight performance drop if this additional
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Fig. 10. Evaluation of the SP-ACP framework with BRIEF-Gist. a)
Matching predicted winter images to winter images performs better than
matching spring to winter images directly. b)-d) Comparison of several
setups of the prediction framework. See text for details. Notice that the
green curve represents the same setup in all plots.

knowledge is omitted.

We can conclude that predicting the changed appearance

of a scene improves the place recognition performance of

BRIEF-Gist. This was clearly illustrated by Fig. 10 a). The

best results were obtained when exploiting the full distri-

bution over possible translations in the dictionary, matching

predicted images against original images, and including the

y-coordinate into the word descriptor.

D. Extending and Improving SeqSLAM

Published by Milford and Wyeth [17], SeqSLAM performs

place recognition by matching whole sequences of images.

This is in contrast to previous approaches like FAB-MAP

or BRIEF-Gist that search for a single globally best match.

[17] reported impressive recognition results on a dataset that

contained footage recorded from a moving car during bright

daylight and a rainy night in a suburban area. However, the

matching performance comes at a price: SeqSLAM relies on

relatively long sequences to be matched in order to reject

false positive candidates. If loop closures in the trajectory

form many but short overlapping sequences that are shorter

than the required minimum length, SeqSLAM would fail. In

order to be applicable in more general settings for long term

navigation, this minimum sequence length has to be kept as

short as possible.

Our goal is therefore to show that SeqSLAM’s per-

formance on short sequence lengths can be improved by

combining it with our proposed scene change prediction.

1) Experimental Setup: SeqSLAM preprocesses the cam-

era images by first downsampling them to e.g. 64× 32 pixel

before performing patch normalization. A simple sum of
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Spring VS Winter, ds=5

Predicted Winter VS Winter, ds=5

Spring VS Winter, ds=10

Predicted Winter VS Winter, ds=10

Spring VS Winter, ds=20
Predicted Winter VS Winter, ds=20 

Fig. 11. Evaluation on the validation dataset. Precision recall plots
obtained by combining SeqSLAM [17] with the proposed SP-ACP approach
(solid lines) compared with SeqSLAM alone (dashed lines). Color indicates
different trajectory lengths (ds) used by SeqSLAM during the sequence
matching. It is apparent that our proposed approach can significantly
improve SeqSLAM’s performance for all values of ds. (For this experiment:
#superpixels=2,500)

absolute differences measure determines the similarity be-

tween two images. Combining SeqSLAM with scene change

prediction is particularly easy, since the change prediction

algorithm can be executed as a preprocessing step before

SeqSLAM starts with its own processing. Since in the

experiments we attempted to match spring against winter

images, we predicted the visual appearance of each spring

scene in winter and fed the predicted winter images together

with the original real winter images into SeqSLAM. We

use the open source implementation OpenSeqSLAM [20]

available online3.

2) Results on the Validation Dataset: Fig. 11 compares

the achieved results on the validation dataset similar to

the experiments using BRIEF-Gist. The precision-recall

plot shows the performance of SeqSLAM alone (i.e. with-

out scene change prediction) using the dashed lines. The

precision-recall curves for the combination of SP-ACP and

SeqSLAM are drawn with solid lines. We show the results

for different settings of the SeqSLAM’s trajectory length

parameter ds, as indicated by the different colors.

The apparent result is that SeqSLAM can immediately

benefit from the change prediction. The gain in precision

and recall, as well as the increased recall at 100% precision

is visible for all trajectory lengths ds. The F-score increases

by almost 0.1 for short and mid sequence lengths and tends

towards 1 for the longest length. Notice that ds = 20
corresponds to a trajectory length of 10 seconds, since the

validation data was captured with 2 Hz from the original

video footage.

We have to remark that the Nordland dataset is perfectly

suited for SeqSLAM since the whole dataset consists of one

single long sequence and the camera observes the scene from

3https://openslam.org/openseqslam.html

https://openslam.org/openseqslam.html
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Fig. 12. Parameter evaluation of the proposed prediction framework using
SeqSLAM on the Nordland validation dataset. Starting from a default set
of parameters, we vary a single parameter to investigate its influence on the
overall performance (see text for details). In each plot, the blue solid line is
the performance without the proposed prediction framework and the solid
red line shows the same default parameter setup of the prediction framework
in all plots (#words=10,000, #superpixels=1,000, incorporate all translations
during prediction).

almost exactly the same viewpoint in all four seasons as

the train follows its tracks. Even more, the velocity of the

train is equal most of the time in all seasons. In robotic

applications these conditions would usually not be met and

we can expect SeqSLAM in its current form to perform

worse in general. Our point however, was to show that

SeqSLAM can in any case benefit from a combination with

the proposed appearance change prediction.

We can conclude that although SeqSLAM alone reaches

good matching results, they can be significantly improved by

first predicting the appearance of the query scene under the

viewing conditions of the stored database scenes.

In the following, we are going to evaluate various in-

fluences on the prediction quality and the resulting place

recognition performance using the validation dataset. This

is followed by final results on the complete Nordland track

using the test dataset.

3) Parameter Evaluation on the Validation Dataset:

Besides the characteristics of the training data, the number

of words in the learned vocabularies, the number of super-

pixel segments per image, and the amount of incorporated

transitions in the prediction are important parameters of the

proposed SP-ACP system. Starting from a default parameter

setting (#words=10,000, #superpixels=1,000, incorporate all

translations during prediction) we vary each of these three

parameters to evaluate its influence on the prediction and re-

sulting place recognition performance. Fig. 12 shows results

of the conducted experiments based on the spring and winter

training and validation datasets.

a) Number of visual words: To evaluate the influence

of the number of words in the visual vocabularies, we varied

the branching factor of the hierarchical k-means we used to

cluster the superpixel descriptors. Since the depth of the tree

was held constant (depth 4), this resulted in 81 to 10,000

words. Fig. 12 a) shows an obvious trend that more words

perform better. However, there are some peculiarities: e.g.

256 words perform better than 625, and the performance

for 4096 and 10,000 words is almost identical. We assume

this results from the limited amount of training data in

our experiments. Supposedly we cannot expect to learn the

true full distribution to translate between two 10,000 word

vocabularies from only one million training samples.

b) Number of superpixels: Fig. 12 b) shows the in-

fluence of the number of superpixel segments per image.

We can observe an expected trade-off in the performance:

The higher the number of superpixels, the better are object

boundaries covered. However, this also means smaller super-

pixels, that cover less image content and are less meaningful.

In our experiments we observed that the optimal number of

superpixels is 2500 per image.

c) Incorporated translations: Fig. 12 c) evaluates the

last of the three parameters: the percentage of words incor-

porated in the prediction.

Remember from section III-C that in order to predict an

image from e.g. summer conditions to winter conditions, we

first compute a word representation of the summer image

and then synthesize a winter representation for each of the

summer words using the learned dictionary. During this

synthesis, we can either use only the single winter word

that translates best according to the training data (winner

takes all, WTA); or we can use a weighted combination of

the words that explain e.g. 50% of the transitions from the

training data or even a weighted combination of all words.

The results of this comparison is illustrated in 12 c). The

obvious conclusion is that incorporating more words yields

better results, however, incorporating more than 75% of the

probability mass does not yield much improvement.

In this setup, WTA breaks the prediction. The similar

experiment using BRIEF-Gist (see Fig. 10 b)) shows also

problems in the high precision regime but a clear benefit in

the mid- and high-recall regimes. The example prediction

results using WTA and the full distribution in Fig. 9 show

that the WTA predictions have higher contrast between

neighbored patches while the predictions from the full dis-



tribution are more smoothed. These high local contrasts may

have a negative influence in combination with the local patch

normalization of SeqSLAM.

d) Dataset characteristics: Fig. 13 shows another im-

portant factor for the influence of the proposed prediction

step for place recognition: the characteristics of the dataset.

These figures show the results for applying SP-ACP and

SeqSLAM on other combinations of seasons (i.e. other

than spring-winter). Our previous work [20] explored the

performance of SeqSLAM (without SP-ACP) for the various

seasonal combinations and found that fall-winter was the

most difficult and summer-fall was the easiest combination

for place recognition using SeqSLAM without appearance

change prediction. We therefore chose these two combina-

tions for comparison.

Both plots in Fig. 13 illustrate the results for various

sequence lengths with and without the prediction step. We

can see that independent of using the prediction or not,

finding correct matchings between summer and fall is much

easier than between fall and winter. This is an expected

result. However, although using the additional prediction step

improves performance for the difficult (fall-winter) case, the

performance actually decreases for the easy (summer-fall)

case. Although the overall performance still remains reason-

able, this result needs to be explained: A look at example

images in Fig. 14 shows that the predicted fall images are

visually very similar to the real fall images. However, we

suppose that the smoothing and artifacts introduced by the

SP-ACP prediction step are a drawback in comparison to

the high similarity between original summer and fall images.

The same effect is also visible on the comparison of spring

images and their word representation using BRIEF-Gist in

Fig. 10 c). Although these disturbing factors are the same

for the comparison between fall and winter images, the

prediction still introduces a visually evident benefit since the

original imaging conditions are very different.

In the conducted place recognition experiments the predic-

tion step improves the place recognition performance with

a prediction of winter from fall but the benefit is not as

large as for predicting winter from spring. This is due to

the higher diversity in appearance of trees, bushes, meadow

etc. in the spring images compared to the fall images. The

example images of spring and fall in figures 9 and 14 give

an impression of the richer information in the spring images.

This enables the proposed prediction system to better learn

the different appearance changes of different image content

and thus to produce better predictions from the spring images

compared to the predictions from fall images. Incorporating

more contextual information (e.g surrounding image patches

or high level knowledge) could help to better exploit the

provided appearance diversity. Directions for future work in

this direction can be found in section VI.

4) Final Results on the 728 km Test Dataset: The final

result of this work is a place recognition experiment using

SeqSLAM on the complete 728 km Nordland track between

spring and winter using the test dataset of section IV-B. The

training dataset remains the same as for the previous exper-
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Fig. 13. Predicting between different seasons. Evaluation based on
SeqSLAM and the validation dataset. (left) Place recognition between fall
and winter is a challenging task. Here the prediction framework can help to
improve the overall performance. (right) In contrast, places in summer and
fall (at least in the Norland dataset) are more similar and place recognition
is much easier (see Fig. 14). In such cases, the prediction result can
become worse. However, the overall place recognition performance remains
reasonable. (For these experiments: #superpixels=2,500)

iments. The ratio of training and test dataset is illustrated in

Fig. 7, where the red part indicates the training part and the

test dataset is shown blue. Fig. 15 shows the result. Again

we compare the place recognition performance with (solid)

and without (dashed) the prediction for different values for

the SeqSLAM sequence length ds. Since the test dataset is

recorded with 0.1 frames per second, a sequence length of 3

corresponds to a 30 seconds trajectory in the original video.

It is apparent how SeqSLAM benefits from the proposed

prediction step for all sequence lengths on the test dataset.

Both the maximum F-score and the recall at 100% pre-



Summer Predicted Fall Fall Predicted Winter Winter

Fig. 14. Example images and predictions for summer, fall and winter. Each row shows the same scene at three different seasons. The images between
the original Summer, Fall and Winter images are predictions from summer to fall and from fall to winter.
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Fig. 15. Final result on the complete Nordland track (test dataset). Again,
we compare the performance of the combination of SeqSLAM [17] with
the proposed scene change prediction approach (solid lines) and SeqSLAM
alone (dashed lines). Color indicates different trajectory lengths (ds) used
by SeqSLAM during the sequence matching. The proposed prediction
framework, trained on an 8 minutes subset, can significantly improve the
place recognition performance on the complete track. (For this experiment:
#superpixels=2,500)

cision improve significantly. This is a remarkable result,

since it shows that our proposed SP-ACP system is able

to extract enough knowledge from the training dataset of

only 8 minutes to significantly improve the place recognition

on the complete journey of almost 10 hours. Considering

the very different environmental conditions met along the

journey (e.g. lowlands, highlands, mountains) and the rather

homogeneous appearance (lowlands) in the training dataset

makes this result even more remarkable. However, we have

to clearly point out that this generalization capability is

of course limited to environmental conditions with similar

systematic change. The proposed system can not be learned

on the Nordland dataset and applied to images of e.g.

Manhattan.

VI. CURRENT LIMITATIONS OF THE APPROACH AND

FUTURE WORK

The proposed SP-ACP system is a rather straightforward

implementation of the idea of incorporating an additional

prediction step for place recognition in systematically chang-

ing environments. However, there is plenty of space for

improvements.

Obviously the prediction step incorporates smoothing and

artifacts in the predicted images. This can cause a decrease

in place recognition performance if the compared original

sequences are very similar (e.g. summer and fall). However,

the predicted images are visually appealing and the place

recognition performance remains reasonable. This can be

interpreted as a kind of “upper bound” for the recognition

performance which is introduced by the smoothing and the

artifacts of the prediction.

In its current form, our algorithm requires perfectly (near

pixel-accurate) aligned images in the training phase. This

requirement is clearly a key limitation of the proposed

approach, since it is hard to fulfill and limits the available

training datasets. We will explore ways to ease or over-

come this requirement in future work, e.g. by anchoring the

training images on stable features. This would increase the

availability of potential training datasets collected by robots

or vehicles in realistic scenarios that are close to real-world

applications.

Currently, we synthesize an actual image during the pre-

diction. This simplifies the qualitative evaluation by visually

comparing the predicted with the real images and further

allows to use existing place recognition algorithms for quan-

titative evaluation. However, the proposed idea of scene

change prediction can in general be performed on different

levels of abstraction: It could also be applied directly on

holistic descriptors like BRIEF-Gist, on visual words like

the ones used by FAB-MAP or on the downsampled and

patch-normalized thumbnail images used by SeqSLAM.

Furthermore, the learned dictionary can be as simple as a



one-to-one association (like the mentioned winner-takes-all

scheme) or capture a full distribution over possible trans-

lations for a specific word. In future work this distribution

could also be conditioned on the state of neighboring seg-

ments, and other local and global image features and thereby

incorporate mutual influences and semantic knowledge. This

could be interpreted as introducing a grammar in addition

to the vocabularies and dictionaries. How such extended

statistics can be learned from training data efficiently is an

interesting direction for future work.

If the dictionary does not exploit such higher level knowl-

edge (as in the superpixel implementation introduced here)

the quality of the prediction is limited. In particular, when

solely relying on local appearance of image segments for

prediction, the choice of the training data is crucial. It is

especially important that the training set is from the same

domain as the desired application, since image modalities

that were not well-covered by the training data can not be

correctly modeled and predicted.

Exploring the requirements for the training dataset and

how the learned vocabularies and dictionary can best gen-

eralize between different environments will be an important

part of our future research. A first step into analysing how

well the system can generalize is to train and test it on a

more diverse dataset. We therefore collected imagery from

webcams around the world for several months that comprises

different seasons, weather conditions and times of day.

A further limitation of the system in its current form is

that it requires different vocabularies for discrete sets of

environmental conditions. While it is of course possible to

create and manage a larger number of such vocabularies and

the respective mutual dictionaries, a unified approach would

be more desirable.

As already mentioned, the Nordland dataset provides

somewhat optimal conditions (apart from the season-induced

appearance changes) for place recognitions, since the camera

observes the scene from almost exactly the same viewpoint

in all four seasons and the variability of the scenes in terms

of semantic categories is rather low. These conditions would

usually not be met in a typical robotic application and we

therefore prepare to evaluate the proposed approach in a

more general setting using data from real robots in different

environments, and vehicles in urban settings.

VII. CONCLUSIONS

Our paper described the novel concept of learning to

predict systematic changes in the appearance of environ-

ments. We explained our SP-ACP implementation based on

superpixel vocabularies and provided examples for scene

change prediction between different seasons. We furthermore

demonstrated how two approaches to place recognition,

BRIEF-Gist and SeqSLAM, can benefit from the scene

change prediction step.

We evaluated all important parameters of the proposed

system and found that none of them requires particular

careful tuning. Parameter values can be chosen safely from

a wide range of values, and the system still produces useful

predictions for place recognition. To conclude: using many

words (e.g. 10,000), many superpixels (e.g. 2,500) and

incorporating many translations (e.g. 75%) leads to good

prediction results. These insights helped to demonstrate new

results with a significant improvement of the place recog-

nition performance of SeqSLAM on the complete Nordland

track. Predictions from spring to winter learned on a small 8

minute subset of the available data yield better matchings on

the complete 728 km track using the same sequence length

ds or allow to use shorter sequences for the same recognition

performance.
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